Answer:
you want 4 correct and 16 incorrect
there are 20 questions
each question has four answers, so
P(right answer) = 1/4
P(wrong answer) = 3/4
----
Since you want 4 correct of 20 we have a combination of 20C4
This is a binomial problem where p = 1/4, q = 3/4 and we get
(20 "choose" 4)*(probability correct)^(number correct)*(probability incorrect)^(number incorrect)
putting numbers in we get
(20c4)*(1/4)^4*(3/4)^16
This gives us
~ .189685
Step-by-step explanation:
Answer:
The sample space would be infinite
{HH, TTTHH, TTTTHH, TTTTTTTHH.......................}
1/8
Step-by-step explanation:
The sample space would be infinite
{HH, TTTHH, TTTTHH, TTTTTTTHH.......................}.
This is because the number of times the coin would be flipped is not specified. So, you can keep flipping the coin forever.
If the coin is tossed four times then the sample space would be
{HHHH HTHH THHH HTHT
HHHT HTTH TTHH THTH
HHTT HHTH TTTH THHT
HTTT TTTT TTHT THTT}
HTHH and TTHH are the only two cases where two consecutive tosses will result in two heads
Probability that the coin will be tossed four times is 2/16 = 1/8
Nolan and his children bought fruits (Apples and bananas) worth $8.
Cost of each apple and bananas are $2 and $0.40 respectively.
Let the number of bananas he bought = y
And the number of apples = x
Therefore, cost of the apples =$2x
And the cost of bananas = $0.40y
Total cost of 'x' apples and 'y' bananas = $(2x + 0.40y)
Equation representing the total cost of fruits will be,
(2x + 0.40y) = 8
10(2x + 0.40y) = 10(8)
20x + 4y = 80
5x + y = 20 --------(1)
If he bought 5 times as many bananas as apples,
y = 5x ------(2)
Substitute the value of y from equation (2) to equation (1),
5x + 5x = 20
10x = 20
x = 2
Substitute the value of 'x' in equation (2)
y = 5(2)
y = 10
Therefore, Nolan bought 2 apples and 10 bananas.
Learn more,
brainly.com/question/14951851
Answer:
1.06 sq inches
Step-by-step explanation:
its reasonable come on now
Answer: I and II.
Step-by-step explanation:
By definition, two solids are similar if their corresponding sides are in the same ratio.
Knowing this, let's find which solids are similar:
Corresponding sides ratio of solids I and II:


Corresponding sides ratio of solids I and III:


Corresponding sides ratio of solids II and III:


You can observe that the solids I and II are similar.