Answer:(9,-5)
Step-by-step explanation: trust me
Answer:
Vamos a inventa tres multiplicaciones de seis factores en la que el resultado sea positivo, es decir un número mayor que cero, en la otra negativo, es decir, un número menor que cero y por último otra multiplicación que de como resultado el cero "0".
Primero recordemos que:
Los factores son los números que se multiplican.
Seis factores serían 6 números.
Multiplicación con resultado positivo, es decir mayor a 0:
2×3×4×2×1×5=240
Multiplicación con resultado negativo, es decir menor a 0:
-4×2×5×2×1×10= -400
Multiplicación con resultado cero:
2×4×6×7×11×0=0
Step-by-step explanation:
Brainliest please
Answer: I think -131
Step-by-step explanation:
Answer: Hence, Probability that a coffee maker will have a defective cord is 0.376=37.6%.
Step-by-step explanation:
Since we have given that
Let A be the event of getting a faulty switch.
Let B be the event of getting a defective cord.
Here, P(A∪B) = 4% = 0.04
P(A∩B) = 0.1% = 0.001
P(A) = 2.5% = 0.025
We need to find P(B):
As we know that

Hence, Probability that a coffee maker will have a defective cord is 0.376=37.6%.
9514 1404 393
Answer:
-13/11
Step-by-step explanation:
Straightforward evaluation of the expression at x=1 gives (1 -1)/(1 -1) = 0/0, an indeterminate form. So, L'Hopital's rule applies. The ratio of derivatives is ...
![\displaystyle\lim_{x\to 1}\dfrac{n}{d}=\dfrac{n'}{d'}=\left.\dfrac{\dfrac{4}{3\sqrt[3]{4x-3}}-\dfrac{7}{2\sqrt{7x-6}}}{\dfrac{5}{2\sqrt{5x-4}}-\dfrac{2}{3\sqrt[3]{2x-1}}}\right|_{x=1}=\dfrac{4/3-7/2}{5/2-2/3}=\dfrac{8-21}{15-4}\\\\=\boxed{-\dfrac{13}{11}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto%201%7D%5Cdfrac%7Bn%7D%7Bd%7D%3D%5Cdfrac%7Bn%27%7D%7Bd%27%7D%3D%5Cleft.%5Cdfrac%7B%5Cdfrac%7B4%7D%7B3%5Csqrt%5B3%5D%7B4x-3%7D%7D-%5Cdfrac%7B7%7D%7B2%5Csqrt%7B7x-6%7D%7D%7D%7B%5Cdfrac%7B5%7D%7B2%5Csqrt%7B5x-4%7D%7D-%5Cdfrac%7B2%7D%7B3%5Csqrt%5B3%5D%7B2x-1%7D%7D%7D%5Cright%7C_%7Bx%3D1%7D%3D%5Cdfrac%7B4%2F3-7%2F2%7D%7B5%2F2-2%2F3%7D%3D%5Cdfrac%7B8-21%7D%7B15-4%7D%5C%5C%5C%5C%3D%5Cboxed%7B-%5Cdfrac%7B13%7D%7B11%7D%7D)