keeping in mind that perpendicular lines have negative reciprocal slopes, hmmmm what's the slope of that line above anyway,
![\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{2}-\stackrel{y1}{(-1)}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{1}}}\implies \cfrac{2+1}{3}\implies 1 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B2%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B2%7D-%5Cstackrel%7By1%7D%7B%28-1%29%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B2%2B1%7D%7B3%7D%5Cimplies%201%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\underline{1}\implies \cfrac{\underline{1}}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{1}{\underline{1}}}\qquad \stackrel{negative~reciprocal}{-\cfrac{1}{\underline{1}}\implies -1}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B%5Cunderline%7B1%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B1%7D%7D%7B1%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B%5Ccfrac%7B1%7D%7B%5Cunderline%7B1%7D%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B-%5Ccfrac%7B1%7D%7B%5Cunderline%7B1%7D%7D%5Cimplies%20-1%7D%7D)
so we're really looking for the equation of a line whose slope is -1 and runs through (2,5)
![\bf (\stackrel{x_1}{2}~,~\stackrel{y_1}{5})~\hspace{10em} \stackrel{slope}{m}\implies -1 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{5}=\stackrel{m}{-1}(x-\stackrel{x_1}{2}) \\\\\\ y-5=-x+2\implies y=-x+7](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B2%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29~%5Chspace%7B10em%7D%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20-1%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B5%7D%3D%5Cstackrel%7Bm%7D%7B-1%7D%28x-%5Cstackrel%7Bx_1%7D%7B2%7D%29%20%5C%5C%5C%5C%5C%5C%20y-5%3D-x%2B2%5Cimplies%20y%3D-x%2B7)
Answer:
kkk
kkkkkkkkkkkkkkkkk
Step-by-step explanation:
kkk
k
Answer:
They will be picked up at 2
yards above sea level
Step-by-step explanation:
Let us consider sea level as reference and positions above sea level as positive and below sea level as negative.
With respect to this reference,
the position of top most point is +17
yards
and the position of lower most point is -13
yards
⇒ The position of midpoint is ![\frac{+17 \frac{3}{4} - 13 \frac{1}{4}}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%2B17%20%5Cfrac%7B3%7D%7B4%7D%20-%2013%20%5Cfrac%7B1%7D%7B4%7D%7D%7B2%7D)
= +2 ![\frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D)
∴ <u>They will be picked up at 2
yards above sea level</u>
Answer:
A for me beacause i understand quite
Step-by-step explanation:
Hope it helps good day
flooring a value, simply means, dropping it to the closest integer, so for the floor function or ⌊x⌋, that means
⌊ 2.5 ⌋ = 2
⌊ 2.00000001 ⌋ = 2
⌊ 2.999999999999⌋ = 2
⌊ -2.0000000001⌋ = -3
⌊ -2.999999999999⌋ = -3
let's recall that on the negative side of the number line, the farther from 0, the smaller, so -1,000,000 is a tiny number compared to the much larger -1.
⌊ -5.2 ⌋ = -6.