Answer: 16/81 (x-10)^2 -4
Step-by-step explanation:
To write a vertex equation with just a point and the vertex, you have to figure out the variables.
In vertex form, the equation is y = a (x-h)^2 + k
Your y is 12, x = 1, h = 10, and k = -4
Plug everything into equation
12 = a (1 - 10)^2 -4
12 = a (-9)^2 - 4
12 = 81a - 4
16 = 81a
16/81 = a
Now you know what the 'a' value is.
If you graph 16/81 (x-10)^2 -4 , you will get a point at (1,12) and a vertex of (10,-4)!
I hope this helps!
Answer:
perimeter of ΔDEF ≈ 32
Step-by-step explanation:
To find the perimeter of the triangle, we will follow the steps below:
First, we will find the length of the side of the triangle DE and FF
To find the length DE, we will use the sine rule
angle E = 49 degrees
e= DF = 10
angle F = 42 degrees
f= DE =?
we can now insert the values into the formula
=
cross-multiply
f sin 49° = 10 sin 42°
Divide both-side by sin 49°
f = 10 sin 42° / sin 49°
f≈8.866
which implies DE ≈8.866
We will now proceed to find side EF
To do that we need to find angle D
angle D + angle E + angle F = 180° (sum of interior angle)
angle D + 49° + 42° = 180°
angle D + 91° = 180°
angle D= 180° - 91°
angle D = 89°
Using the sine rule to find the side EF
angle E = 49 degrees
e= DF = 10
ange D = 89 degrees
d= EF = ?
we can now proceed to insert the values into the formula
=
cross-multiply
d sin 49° = 10 sin 89°
divide both-side of the equation by sin 49°
d= 10 sin 89°/sin 49°
d≈13.248
This implies that length EF = 13.248
perimeter of ΔDEF = length DE + length EF + length DF
=13.248 + 8.866 + 10
=32.144
≈ 32 to the nearest whole number
perimeter of ΔDEF ≈ 32
Answer:

Step-by-step explanation:

First you need to make the 12 5/8 into an improper fraction by multiplying 12 by 8 and then adding the total by 5.
-> 
Now you have
so you need a common denominator by multiplying the first fraction by 2

Then you subtract 160 - 101 which equals 59.

Hope this helps
3,-13
-1,3
0,-1
3,-13