The equation of a line of the slope-intersection form is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
If two lines are parallel then their slopes are equal.
We have the following line:

Thus, the slope of the line is -5.
Therefore a parallel line is of the form:

We replace the point 

Finally, the equation is of the form:

Answer:

Answer:
its d
Step-by-step explanation:
he did one task in 2.25 mins so multiply by 10
Answer:
6,-9
Step by step explaination
<em><u>First</u></em><em><u> </u></em><em><u>yo</u></em><em><u>u</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>got</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>(</u></em><em><u>4</u></em><em><u>-</u></em><em><u>7</u></em><em><u>)</u></em>
<em><u>use</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>formula</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>transform</u></em><em><u>ation</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>adding</u></em><em><u> </u></em><em><u>2</u></em><em><u> </u></em>
we have

The solution is the shaded area above the dotted line
we know that
If a point is a solution of the inequality, then the coordinates of the point must satisfy the inequality
We will verify all cases to determine the solution of the problem
<u>Case A)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
<u>Case B)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is true
therefore
the point
is a solution of the inequality
<u>Case C)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
<u>Case D)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
therefore
<u>the answer is the Point B</u>

To better understand the problem see the attached figure