Answer:
r = -8sin(theta)
Step-by-step explanation:
used desmos
To solve for the missing steps, let's rewrite first the problem.
Given:
In a plane, line m is perpendicular to line t or m⟂t
line n is perpendicular to line t or n⟂t
Required:
Prove that line m and n are parallel lines
Solution:
We know that line t is the transversal of the lines m and n.
With reference to the figure above,
∠ 2 and ∠ 6 are right angles by definition of <u>perpendicular lines</u>. This states that if two lines are perpendicular with each other, they intersect at right angles.
So ∠ 2 ≅ ∠ 6. Since <u>corresponding</u> angles are congruent.
Therefore, line m and line n are parallel lines.
<span>
<em>ANSWERS: perpendicular lines, corresponding</em>
</span>
Answer:
decrease by 2.16
Step-by-step explanation:
Convert the problem to an equation using the percentage formula: P% * X = Y.
P is 10%, X is 150, so the equation is 10% * 150 = Y.
Convert 10% to a decimal by removing the percent sign and dividing by 100: 10/100 = 0.10.
For x you insert zero, and
0 = 2 - 8 * 0
0 = 2
(6 + 3) + 21 = 6 + (3 + 21)
It's an ASSOCIATIVE PROPERTY
(a + b) + c = a + (b + c)