Answer:
(2a +b)·(13a^2 -5ab +b^2)
Step-by-step explanation:
The factorization of the difference of cubes is a standard form:
(p -q)^3 = (p -q)(p^2 +pq +q^2)
Here, you have ...
so the factorization is ...
(3a -(a -b))·((3a)^2 +(3a)(a -b) +(a -b)^2) . . . . substitute for p and q
= (2a +b)·(9a^2 +3a^2 -3ab +a^2 -2ab +b^2) . . . . simplify a bit
= (2a +b)·(13a^2 -5ab +b^2) . . . . . . collect terms
Desmond ran the further distance because Betty ran 2/4 and Desmond ran 3/4
The objective function is simply a function that is meant to be maximized. Because this function is multivariable, we know that with the applied constraints, the value that maximizes this function must be on the boundary of the domain described by these constraints. If you view the attached image, the grey section highlighted section is the area on the domain of the function which meets all defined constraints. (It is all of the inequalities plotted over one another). Your job would thus be to determine which value on the boundary maximizes the value of the objective function. In this case, since any contribution from y reduces the value of the objective function, you will want to make this value as low as possible, and make x as high as possible. Within the boundaries of the constraints, this thus maximizes the function at x = 5, y = 0.
Option C. y = 0.06x + 1200
In that function 1200 represents the flat monthly salary, x is the value of the items sold and 0.06 means that teh percentage is 6%.
for mean you add every number and divide it by the amount of numbers in the data set
for median you put the numbers in order and find the middle number, if there is no middle get the mean for the two middle numbers
range is basically the lowest and highest number