1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
4 years ago
8

how many liters of a 10% silver iodide solution must be mixed with 3 L of a 4% silver iodine solution to get s 6% solution?

Mathematics
1 answer:
Vikentia [17]4 years ago
4 0
To answer this problem, you should just substitute some figures in order to get the required amount.

So, let a be the amount of 10% iodide solution

So...

4 (3) + 10a = 6 (3+a)
[4 represents the silver iodine solution, the 3 is the liters, while we are looking for the 6% solution]

12 + 10a = 18 + 6a

10a - 6a = 18 - 12

4a = 6

a = 6/4
a = 3/2

So you will need 3/2 or 1.5 liters of 10% iodide solution.
You might be interested in
I need the answers for this question
nekit [7.7K]

Answer:

13/12 or 1 1/12

Step-by-step explanation:

First you would convert the 1/6 to 2/12 then add them like normal to get 13/12.

Hope this helps :

5 0
3 years ago
Consider this scaled figure of a swimming pool. The dimensions of the original pool are 24 feet wide by 36 feet long. A rectangl
kozerog [31]

The scale factor used for scaling the actual rectangular pool was 4/15 and the length of the scaled rectangle is 9.6 feet.

<h3>How to calculate the scale factor?</h3>

Suppose the initial measurement of a figure was x units.

And let the figure is scaled and new measurement is of y units.

Since the scaling is done by multiplication of some constant, that constant is called scale factor. Let that constant be 's'.

Then we have:

s \times x = y\\s = \dfrac{y}{x}

Thus, scale factor is the ratio of the new measurement to the old measurement.


For this case, we're specified that:

Dimensions of the original pool = 24 feet wide by 36 feet long

The scaled rectangle's dimension: 6.4 feet width and L feet length (we assume the length be L units).

So, in scale drawing, 24 feet was converted to 6.4 feet. Let the scale factor be 's', then:

6.4 = s \times 24\\\\s = \dfrac{6.4}{24} = \dfrac{4}{15}

Thus, since length is also scaled by same factor(as the whole figure is scaled by constant scale factor assumingly), we get:

Scaled length = s times original length

L = \dfrac{4}{15} \times 36 = 9.6 \: \rm feet

Thus, the scale factor used for scaling the actual rectangular pool was 4/15 and the length of the scaled rectangle is 9.6 feet.

Learn more about scale factors here :

brainly.com/question/8765466

5 0
2 years ago
90,95,101,98,103,119,124,123,132,127 what is the mean
lana66690 [7]

To find the mean, you add all of the numbers and divide by how many they are. When you add them you get 1112, then divide by 10 and get...

answer: 111.2

4 0
3 years ago
The answer has to be simplified
OLga [1]

Answer:

m = 2

Step-by-step explanation:

m        m+3

----- = ----------

4           10

Using cross products

10m = 4(m+3)

Distribute

10m = 4m+12

Subtract 4m from each side

10m-4m = 4m-4m+12

6m = 12

Divide by 6

6m/6 = 12/6

m = 2

3 0
3 years ago
Read 2 more answers
-3|9x-7|=2 Find the answer for x
labwork [276]
<h2>Solving Equations with Absolute Expressions</h2><h3>Answer:</h3>

<u>No Solutions</u>

<h3>Step-by-step explanation:</h3>

Given:

-3|9x -7| = 2

Rewriting the given equation:

-3|9x -7| = 2 \\ |9x -7| = -\frac{2}{3}

We have to realize that the right side of the equation, |9x -7|, will always be positive no matter what real values of x (because we're taking the absolute value of the expression) and we are equating it to a <em>negative</em> constant number, -\frac{2}{3}\\. Something that is always positive will never be negative so there's no value for x that satisfies the solution.

\rule{6.5cm}{0.5pt}

<em>You</em><em> </em><em>may</em><em> </em><em>not</em><em> </em><em>read</em><em> </em><em>the</em><em> </em><em>following</em><em> passage</em><em> </em><em>that</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>written.</em>

\rule{6.5cm}{0.5pt}

Solving by positive of the expression:

9x -7 = -\frac{2}{3} \\ 9x = -\frac{2}{3} +7 \\ 9x = -\frac{2}{3} +\frac{21}{3} \\ 9x = \frac{19}{3} \\ 9x \times \frac{1}{9} = \frac{19}{3} \times \frac{1}{9} \\ x = \frac{19}{27}

Solving by the negative of the expression:

-(9x -7)= -\frac{2}{3} \\ 9x -7 = \frac{2}{3} \\  9x = \frac{2}{3} +7 \\ 9x = \frac{2}{3} +\frac{21}{3} \\ 9x = \frac{23}{3} \\ 9x \times \frac{1}{9} = \frac{23}{3} \times \frac{1}{9} \\ x = \frac{23}{27}

Checking: x = \frac{19}{27}\\

-3|9(\frac{19}{27}) -7| \stackrel{?}{=} 2 \\ -3|\frac{19}{3} -7| \stackrel{?}{=} 2 \\ -3|\frac{19}{3} -\frac{21}{3}| \stackrel{?}{=} 2 \\ -3|-\frac{2}{3}| \stackrel{?}{=} \\ -3(\frac{2}{3}) \stackrel{?}{=} 2 \\ -2 \stackrel{?}{=} 2 \\ -2 \neq 2

x = \frac{19}{27}\\ is an extraneous solution.

Checking: x = \frac{23}{27}\\

-3|9(\frac{23}{27}) -7| \stackrel{?}{=} 2 \\ -3|\frac{23}{3} -7| \stackrel{?}{=} 2 \\ -3|\frac{23}{3} -\frac{21}{3}| \stackrel{?}{=} 2 \\ -3|\frac{2}{3}| \stackrel{?}{=} \\ -3(\frac{2}{3}) \stackrel{?}{=} 2 \\ -2 \stackrel{?}{=} 2 \\ -2 \neq 2

x = \frac{23}{27}\\ is an extraneous solution.

8 0
3 years ago
Other questions:
  • A student is asked to find the derivative of y = x sin2 (x) with respect to variable x, given x, y &gt; 0. They provide the foll
    8·1 answer
  • kennan has 7 sheets of paper. he uses 2 1/2 sheets to make posters. he cuts the remaining paper in 6 equal rectangles to make ca
    6·1 answer
  • Help pls ASAP <br><br><br> Thanks
    11·1 answer
  • What is the mean of 11 15 16 16 21 5 9
    14·1 answer
  • What’s the distance between points n(-1,-11) and p(-1,-3)
    7·1 answer
  • The following set of coordinates most specifically represents which figure?
    7·2 answers
  • How many minutes are there in a week
    5·2 answers
  • The percentage charged each month on purchases charged to the credit card
    14·1 answer
  • 3 2/4(15×5/6 .........................................
    5·1 answer
  • Find the measure of FHC<br> I WILL GIVE BRAINLIEST TO THE CORRECT ANSWER
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!