Answer:
c. 1 and 3
Step-by-step explanation:
To quickly solve this problem, we can use a graphing tool or a calculator to plot each equation.
Please see the attached image below, to find more information about the graph
s
The equations are:
1) y = sin (3x + π/6)
2) y = cos (3x - π/6)
3) y = cos (3x - π/3)
Looking at the graphs, we can see that the identical ones
are equations one and three
Correct option:
c. 1 and 3
Answer:
120 I think.
Step-by-step explanation:
Because 10*12=120
Answer:
c. 61.25 kg
Step-by-step explanation:
The margin of error in estimating the true mean weight of male baluga whales in the Artic Ocean.
a. 15.31 kg
b. 51.40 kg
c. 61.25 kg
d. 80.49 kg
Margin of Error Formula= z × Standard deviation/√n
95% confidence interval = 1.96
Standard deviation = 125kg
n = 16 samples
Margin of error= 1.96 × 125/√16
= 1.96 × 125/4
= 245/4
= 61.25kg
The margin of error in estimating the true mean weight of male baluga whales in the Artic Ocean is 61.25kg
1) The function is
3(x + 2)³ - 32) The
end behaviour is the
limits when x approaches +/- infinity.3) Since the polynomial is of
odd degree you can predict that
the ends head off in opposite direction. The limits confirm that.
4) The limit when x approaches negative infinity is negative infinity, then
the left end of the function heads off downward (toward - ∞).
5) The limit when x approaches positive infinity is positivie infinity, then
the right end of the function heads off upward (toward + ∞).
6) To graph the function it is important to determine:
- x-intercepts
- y-intercepts
- critical points: local maxima, local minima, and inflection points.
7)
x-intercepts ⇒ y = 0⇒ <span>
3(x + 2)³ - 3 = 0 ⇒ (x + 2)³ - 1 = 0
</span>
<span>⇒ (x + 2)³ = -1 ⇒ x + 2 = 1 ⇒
x = - 1</span>
8)
y-intercepts ⇒ x = 0y = <span>3(x + 2)³ - 3 =
3(0 + 2)³ - 3 = 0 - 3×8 - 3 = 24 - 3 =
21</span><span>
</span><span>
</span><span>9)
Critical points ⇒ first derivative = 0</span><span>
</span><span>
</span><span>i) dy / dx = 9(x + 2)² = 0
</span><span>
</span><span>
</span><span>⇒ x + 2 = 0 ⇒
x = - 2</span><span>
</span><span>
</span><span>ii)
second derivative: to determine where x = - 2 is a local maximum, a local minimum, or an inflection point.
</span><span>
</span><span>
</span><span>
y'' = 18 (x + 2); x = - 2 ⇒ y'' = 0 ⇒ inflection point.</span><span>
</span><span>
</span><span>Then the function does not have local minimum nor maximum, but an
inflection point at x = -2.</span><span>
</span><span>
</span><span>Using all that information you can
graph the function, and I
attache the figure with the graph.
</span>