Yes, 23 has an inverse mod 1000 because gcd(23, 1000) = 1 (i.e. they are coprime).
Let <em>x</em> be the inverse. Then <em>x</em> is such that
23<em>x</em> ≡ 1 (mod 1000)
Use the Euclidean algorithm to solve for <em>x</em> :
1000 = 43×23 + 11
23 = 2×11 + 1
→ 1 ≡ 23 - 2×11 (mod 1000)
→ 1 ≡ 23 - 2×(1000 - 43×23) (mod 1000)
→ 1 ≡ 23 - 2×1000 + 86×23 (mod 1000)
→ 1 ≡ 87×23 - 2×1000 ≡ 87×23 (mod 1000)
→ 23⁻¹ ≡ 87 (mod 1000)
Hey there!
<u>Find </u><u>f(</u><u>-</u><u>3</u><u>)</u><u> </u><u>:</u>
f(-3) = 8 ✅
f(x) = -x + 5
<em>></em><em>></em><em> </em><em>Substitute </em><em>-</em><em>3</em><em> </em><em>for </em><em>x </em><em>in </em><em>f(</em><em>x)</em><em> </em><em>:</em><em> </em>
f(-3) = -(-3) + 5
f(-3) = 3 + 5
f(-3) = 8
Therefore, your answer is f(-3) = 8
Similar question :
↣ brainly.com/question/20922457
Answer:
21 matches
Step-by-step explanation:
This is a combination problem where we have to select two member out of 7 members
So we want calculation of 7C2
7C2 = 7!/[(2!)(7-2)!]
(7*6*5*4*3*2*1)/[(2*1) *(5*4*3*2*1]
(7*6)/2 ~ Note everything that easily cancels here!
42/2
21 matches
No because ten days from may 5th would be the 15th and then the next 10 days would be the 25