Step-by-step explanation:
We will have the following
*First: We have that the area of a sector of a circle is given by the expression:
A = r²a/2
Here r is the radius and alpha is the central angle.
*Second: We determine the central angle as follows:

(12)²a/2 ➡️ a = 36í•2/(12) ²➡️

So, the central angle has a measurement of 1/2 pi.
Third: We determine the perimeter of the sector as follows:
First: we determine the arc length with two times the radius, that is:
p = 2(12) +

➡️ p = 24 +

<em>So</em><em>,</em><em> </em><em>the</em><em> </em><em>perimeter</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>sector</em><em> </em><em>is</em><em> </em><em>2</em><em>4</em><em>+</em><em> </em><em>6pi</em><em> </em><em>meters</em><em> </em><em>[</em><em> </em><em>Approximately</em><em> </em><em>4</em><em>3</em><em> </em><em>meters</em><em>]</em><em>.</em>