P parallel to q
So m<1 =m <3
3x=105
x=35
tell me if you don't understand
Answer:
The maximum revenue is $900, obtained with 30 people
Step-by-step explanation:
Naturally, the answer should be a number equal or higher than 20, because up to 20 persons, each one pays the same. Lets define a revenue function for x greater than or equal to 20.
f(x) = x*(40-(x-20)) = -x²+60x
Note that f multiplies the number of persons by how much would they pay (here, assuming that there are more than 20).
f is quadratic with negative main coefficient and its maximum value will be reached at the vertex.
The value of the x coordinate of the vertex is -b/2a = -60/-2 = 30
for x = 30, f(x) = 30*(40-(30-20))=30*30=900
So the maximum revenue is $900.
Answer:
yes
Step-by-step explanation:
it is rational
Answer:
Cardiac output:
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:
---1
A = 3 mg

Do, integration by parts
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B20t%5Cint%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%7D-%5Cint%5B%5Cfrac%7Bd%5B20t%5D%7D%7Bdt%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2C%20dt%5Ddt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20%7D%7B0.6%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-0.6t%7D%7D%7B%280.6%29%5E2%7D%5D%5E%7B10%7D_%7B0%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-200e%5E%7B-6%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D%5D%2B%5Cfrac%7B20%7D%7B%280.60%5E2%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5Cfrac%7B20%281-e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D-%5Cfrac%7B200e%5E%7B-6%7D%7D%7B0.6%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%5Csim%20%7B54.49%7D)
Substitute the value in 1
Cardiac output:
Cardiac output:
Hence Cardiac output: