Let n be unknown number, then 1/5 of this number is 1/5n. When you add these two numbers, you get

You know that this sum is equal to 24, so

1. Multiply this equation by 5:

2. Solve it:

Answer: n=20, correct choice is B.
The area of the triangle is
A = (xy)/2
Also,
sqrt(x^2 + y^2) = 19
We solve this for y.
x^2 + y^2 = 361
y^2 = 361 - x^2
y = sqrt(361 - x^2)
Now we substitute this expression for y in the area equation.
A = (1/2)(x)(sqrt(361 - x^2))
A = (1/2)(x)(361 - x^2)^(1/2)
We take the derivative of A with respect to x.
dA/dx = (1/2)[(x) * d/dx(361 - x^2)^(1/2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(x) * (1/2)(361 - x^2)^(-1/2)(-2x) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(361 - x^2)^(-1/2)(-x^2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2)/(361 - x^2)^(1/2) + (361 - x^2)/(361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2 - x^2 + 361)/(361 - x^2)^(1/2)]
dA/dx = (-2x^2 + 361)/[2(361 - x^2)^(1/2)]
Now we set the derivative equal to zero.
(-2x^2 + 361)/[2(361 - x^2)^(1/2)] = 0
-2x^2 + 361 = 0
-2x^2 = -361
2x^2 = 361
x^2 = 361/2
x = 19/sqrt(2)
x^2 + y^2 = 361
(19/sqrt(2))^2 + y^2 = 361
361/2 + y^2 = 361
y^2 = 361/2
y = 19/sqrt(2)
We have maximum area at x = 19/sqrt(2) and y = 19/sqrt(2), or when x = y.
Answer: 1mi/5280
Step-by-step explanation: I dunno how to explain this. Its really easy. Always have the converting unit on the denominator
I’m not completely sure but I think it’s
4 x 103 2 x 103 = 8 x 106 (btw I don’t know how to write the exponent so the ones next to the 10’s are the exponents)
If it is what i am thinking, your answer will be TRUE