Answer:
The solution to the system of equations (x, y) = (2, 4) represents the month in which exports and imports were equal. Both were 4 in February.
Step-by-step explanation:
We're not sure what "system of equations" is being referenced here, since no equations are shown or described.
__
Perhaps your "system of equations" is ...
f(x) = some equation
g(x) = some other equation
Then the solution to this system of equation is the pair of values (x, y) that gives ...
y = f(x) = g(x)
If x represents the month number, then the solution can be read from the table:
(x, y) = (2, 4)
This is the month in which exports and imports were equal. Both numbers were 4 in February.
Answer:
see explaination
Step-by-step explanation:
Using the formulla that
sum of terms number of terms sample mean -
Gives the sample mean as \mu=17.954
Now varaince is given by
s^2=\frac{1}{50-1}\sum_{i=1}^{49}(x_i-19.954)^2=9.97
and the standard deviation is s=\sqrt{9.97}=3.16
b) The standard error is given by
\frac{s}{\sqrt{n-1}}=\frac{3.16}{\sqrt{49}}=0.45
c) For the given data we have the least number in the sample is 12.0 and the greatest number in the sample is 24.1
Q_1=15.83, \mathrm{Median}=17.55 and Q_3=19.88
d) Since the interquartile range is Q_3-Q_1=19.88-15.83=4.05
Now the outlier is a number which is greater than 19.88+1.5(4.05)=25.96
or a number which is less than 15.83-1.5(4.05)=9.76
As there is no such number so the given sample has no outliers
Answer:
6x+20
Step-by-step explanation:
F(x) = 6x+2
f(x+3) means replace x with x+3
F(x+3) = 6(x+3)+2
= 6x+18+2
= 6x+20
Answer:
$1300
Step-by-step explanation:
The extruder yields a revenue of $200per hour
Y denotes the number of breakdown per day.
The daily revenue generated is given as
R = 1600 - 50Y^2
We have an average of 2 breakdown per day
Lamda = 2
Represent lamda as β
E(Y) = β
E(Y(Y-1)) = β^2
E(Y^2) = E[Y(Y-1)] + E(Y)
= β^2 + β
E(R) = E(1600 - 50Y^2)
= 1600 - 50E(Y^2)
= 1600 - 50(β^2 +β)
Recall that β = lamda = 2
= 1600 - 50(2^2 + 2)
= 1600 - 50(4+2)
= 1600 - 50(6)
= 1600 - 300
= 1300
$1300
The expected daily revenue of the extruder is $1300
Answer:
56
Step-by-step explanation: