1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
4 years ago
12

Wat is the simplified expression for 3^-4 • 2^3 • 3^2 over 2^4 • 3^-3

Mathematics
2 answers:
Irina18 [472]4 years ago
6 0
 (3^-4)(2^3)(3^2)  
----------------- 
(2^4)(3^-3)
I will keep this as simple as possible (for clarity). Any negative exponents should be switched from top to bottom and the negative sign removed from the exponent. 

(3^3)(2^3)(3^2)  
----------------- 
(2^4)(3^4)

Add the like terms in the numerator

(3^5)(2^3)  
---------- 
(2^4)(3^4)

Since we have powers of 3 and powers of 2 in the numerator and denominator we can add them together (just like when we reduce other fractions)  For example, x^4/x => x^3, or x^1/x^6 => 1/x^5

3/2

Final answer 3/2. 
Ratling [72]4 years ago
3 0
The answer is:  "\frac{3}{2}" . 
______________________________________________ 
          (or, write as: "1<span>½" ; or,  "1.5").</span>
______________________________________________
Explanation:
______________________________________________
We are asked to simplify the given expression:
______________________________________________
  →  \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}} &#10;&#10;  ;
______________________________________________
Note:  In the "numerator" :
_________________________
   →  2³  =  2 × 2 × 2  =  8 .

   →  3²  =  3 × 3  =  9 .
_________________________
Note:  In the "denominator" :
_________________________
   →  2⁴  =  2 × 2 × 2 × 2 = 16 .
_____________________________
     So, rewrite our expression; substituting "8" for "(2³)";
and substituting "9" for "(3²)" — [in the numerator] ;
and substituting:  "16" for "(2⁴)" — [in the denominator] ;
_____________________________________________________
   → AS FOLLOWS:
_____________________________________________________
   →  \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}}  ;

          =  \frac{3^{-4}×8×(9}{16×3^{-3}} ;
_____________________________________________________
   →  Since we have an "8" in the "numerator"; and a "16" in the "denominator" —respectively;  and since both values, taken individually in the numerator—and taken individually in the denominator— are multiplied by other values as isolated numbers;  we can "cancel out" the "8" in the "numerator" to a "1"; and change the "16" in the "denominator" to a "2" ;  since:
            "16÷8 = 2" ; and since "8÷8=1" ;  that is: "8/16 = 1/2".  We can then "eliminate" the "1" in the "numerator";  since in the numerator, there are other values that are multiplied by this "1" ;  & any value multiplied by "1" is equal to that same value.
___________________________________________
So we can rewrite the expression, as follows:
___________________________________________
   →  \frac{3^{-4}×(9)}{2×3^{-3}} ;  

↔ Rearrange and rewrite as follows:
_______________________________________
     →   \frac{3^{-4}×(9)}{2×3^{-3}} 

    =  \frac{(9) *{3^{-4}}{2×3^{-3}} ;
____________________________________
   → Note the following properties of exponents:
__________________________________________
         ⇒  (\frac{a} {b} ⁿ  = \frac{ a^{n}}{b^{n}}   ;  
                      → (b ≠ 0) ; 
__________________________________________
         ⇒  (a^{m} )ⁿ =  aa^{(m*n)}};
__________________________________________
         ⇒  a^{m}  a^{n} =  a^{(m+n)};
<u><em>
and especially</em></u>:

         ⇒\frac{ a^{m}}{ a^{n}}  =  a^{(m-n)}   ;  (a  \neq  0) ;;

<u><em>and especially</em></u>:

         ⇒  a^{-n}  =  \frac{1}{(a^{n) }} ;  (a \neq  0););                       If "n" is a positive integer; and if "a" is a non-zero real number. 
   _____________________________________________________
         →  So;  (3⁻⁴) / (3⁻³)  = 3⁽⁽⁻⁴ ⁻ ⁽⁻³⁾⁾ = 3⁽⁻⁴ ⁺ ³⁾ = 3⁻¹  
                                         = \frac{1}{(3^{1})} =  \frac{1}{3} ; ;  
_______________________________________________________
         →  Rewrite the expression:
_________________________________________
         →  \frac{(9) *{3^{-4}}{2×3^{-3}} ; 
 
               =  \frac{(9*1)}{(2*3)} ;                =   \frac{9}{6} ;                = \frac{(9/3) }{(6/3)} ;                = \frac{3}{2} ; or; write as: " 1 ½ " ; or, write as: " 1.5 ".
_______________________________________________________
You might be interested in
Can anyone help me with this??
Svetlanka [38]

sorry yo u teamo mucho ☺

3 0
3 years ago
What percent of 75 is 45 show your work
erastovalidia [21]

Multiply the fraction by 100%.

\dfrac{45}{75}\times 100\%=60\%

5 0
3 years ago
3
Inessa [10]

Answer:

0.05, 0.5, 0.507, 0.57, 0.577

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Whats the answer to this?
Tcecarenko [31]
I think that B is the most logical answer.


3 0
3 years ago
Which expression is equal to 16.25 ÷ 2.5?
kirza4 [7]
6.5 is the answer to your question
6 0
4 years ago
Other questions:
  • in a given formation Carmen a color guard member is at 7, 10 on a planning grid a change in the color guards formation translate
    7·1 answer
  • explain how estimating the quotient helps you place the first digit the quotient of a division problem
    7·2 answers
  • Find the vertex of y=5-4x-x^2
    9·2 answers
  • Express 80 as the product of prime factors write the prime factors in ascending order
    8·2 answers
  • PLEASE HELP which best describes the figure that represented by the following coordinates
    9·2 answers
  • Someone please help me ​
    9·2 answers
  • Determine the intercepts of the line.<br> X-intercept:(____,____)<br> Y-intercept:(____,____)
    5·1 answer
  • HELP!can somebody give me the answer then explain how they did and if you cheated tell me how you cheated lol
    10·1 answer
  • Help please for math
    6·2 answers
  • If you want to conduct a practical study that finds
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!