1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
12

Wat is the simplified expression for 3^-4 • 2^3 • 3^2 over 2^4 • 3^-3

Mathematics
2 answers:
Irina18 [472]3 years ago
6 0
 (3^-4)(2^3)(3^2)  
----------------- 
(2^4)(3^-3)
I will keep this as simple as possible (for clarity). Any negative exponents should be switched from top to bottom and the negative sign removed from the exponent. 

(3^3)(2^3)(3^2)  
----------------- 
(2^4)(3^4)

Add the like terms in the numerator

(3^5)(2^3)  
---------- 
(2^4)(3^4)

Since we have powers of 3 and powers of 2 in the numerator and denominator we can add them together (just like when we reduce other fractions)  For example, x^4/x => x^3, or x^1/x^6 => 1/x^5

3/2

Final answer 3/2. 
Ratling [72]3 years ago
3 0
The answer is:  "\frac{3}{2}" . 
______________________________________________ 
          (or, write as: "1<span>½" ; or,  "1.5").</span>
______________________________________________
Explanation:
______________________________________________
We are asked to simplify the given expression:
______________________________________________
  →  \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}} &#10;&#10;  ;
______________________________________________
Note:  In the "numerator" :
_________________________
   →  2³  =  2 × 2 × 2  =  8 .

   →  3²  =  3 × 3  =  9 .
_________________________
Note:  In the "denominator" :
_________________________
   →  2⁴  =  2 × 2 × 2 × 2 = 16 .
_____________________________
     So, rewrite our expression; substituting "8" for "(2³)";
and substituting "9" for "(3²)" — [in the numerator] ;
and substituting:  "16" for "(2⁴)" — [in the denominator] ;
_____________________________________________________
   → AS FOLLOWS:
_____________________________________________________
   →  \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}}  ;

          =  \frac{3^{-4}×8×(9}{16×3^{-3}} ;
_____________________________________________________
   →  Since we have an "8" in the "numerator"; and a "16" in the "denominator" —respectively;  and since both values, taken individually in the numerator—and taken individually in the denominator— are multiplied by other values as isolated numbers;  we can "cancel out" the "8" in the "numerator" to a "1"; and change the "16" in the "denominator" to a "2" ;  since:
            "16÷8 = 2" ; and since "8÷8=1" ;  that is: "8/16 = 1/2".  We can then "eliminate" the "1" in the "numerator";  since in the numerator, there are other values that are multiplied by this "1" ;  & any value multiplied by "1" is equal to that same value.
___________________________________________
So we can rewrite the expression, as follows:
___________________________________________
   →  \frac{3^{-4}×(9)}{2×3^{-3}} ;  

↔ Rearrange and rewrite as follows:
_______________________________________
     →   \frac{3^{-4}×(9)}{2×3^{-3}} 

    =  \frac{(9) *{3^{-4}}{2×3^{-3}} ;
____________________________________
   → Note the following properties of exponents:
__________________________________________
         ⇒  (\frac{a} {b} ⁿ  = \frac{ a^{n}}{b^{n}}   ;  
                      → (b ≠ 0) ; 
__________________________________________
         ⇒  (a^{m} )ⁿ =  aa^{(m*n)}};
__________________________________________
         ⇒  a^{m}  a^{n} =  a^{(m+n)};
<u><em>
and especially</em></u>:

         ⇒\frac{ a^{m}}{ a^{n}}  =  a^{(m-n)}   ;  (a  \neq  0) ;;

<u><em>and especially</em></u>:

         ⇒  a^{-n}  =  \frac{1}{(a^{n) }} ;  (a \neq  0););                       If "n" is a positive integer; and if "a" is a non-zero real number. 
   _____________________________________________________
         →  So;  (3⁻⁴) / (3⁻³)  = 3⁽⁽⁻⁴ ⁻ ⁽⁻³⁾⁾ = 3⁽⁻⁴ ⁺ ³⁾ = 3⁻¹  
                                         = \frac{1}{(3^{1})} =  \frac{1}{3} ; ;  
_______________________________________________________
         →  Rewrite the expression:
_________________________________________
         →  \frac{(9) *{3^{-4}}{2×3^{-3}} ; 
 
               =  \frac{(9*1)}{(2*3)} ;                =   \frac{9}{6} ;                = \frac{(9/3) }{(6/3)} ;                = \frac{3}{2} ; or; write as: " 1 ½ " ; or, write as: " 1.5 ".
_______________________________________________________
You might be interested in
Find the surface area of the composite figure
nataly862011 [7]

solution given:

For Cuboid

length[l]=11mm

breadth [b]=9mm

height[h]=6mm

For semi cylinder

height[H]=11mm

radius[r]=\frac{9}{2}=4.5mm

Now

Totalsurface area=2(lb+bh+lh)+½(2πr(r+H))-l*b[/tex]

:2(11*9+9*6+11*6)+22/7*4.5(4.5+11)-11*9

:438+219.2-99

:558.2mm²

Here area of base is subtracted as it is not included.

<u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>s</u><u>u</u><u>r</u><u>f</u><u>a</u><u>c</u><u>e</u><u> </u><u>a</u><u>r</u><u>e</u><u>a</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>m</u><u>p</u><u>o</u><u>s</u><u>i</u><u>t</u><u>e</u><u> </u><u>f</u><u>i</u><u>g</u><u>u</u><u>r</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u><u>5</u><u>5</u><u>8.</u><u>2</u><u>mm²</u><u>.</u>

8 0
3 years ago
Read 2 more answers
Tell whether this function is quadratic. {(10, 50), (11, 71), (12, 94), (13, 119), (14, 146)} .
irga5000 [103]

When we have consecutive values, f(10), f(11), f(12), f(13), f(14), we can make a difference table to determine the degree of f as a polynomial.  A quadratic will have a constant second difference:

x         10  11    12    13   14

f(x)       50 71  94  119  146

1st diff    21   23  25  27

2nd diff      2    2    2

We got a constant second difference, so f is a polynomial of degree two.

Answer: This function is quadratic

6 0
3 years ago
Question 4: The storage in a reach of a river at a point in time is 255 m3 (meters cubed) . Determine the average rate of inflow
irakobra [83]

Answer:

0.319 m³/s

Step-by-step explanation:

Data provided:

Initial volume in the river = 255 m³

Final volume required in the storage = 325 m³

Average outflow = 0.30 m³/s

Duration for raising the level = 1 hour = 3600 seconds

Now,

The actual volume required to raise the volume to 325 m³

= Final volume - Initial volume

= 325 m³ - 255 m³

= 70 m³

also,

the amount of outflow in 1 hour = Average rate of outflow × Time

= 0.30 m³/s × 3600 s

= 1080 m³

Therefore,

the total volume required = 1080 m³ + 70 m³ = 1150 m³

Now,

the average rate of inflow required = \frac{\textup{Total volume required}}{\textup{Time}}

= \frac{\textup{1150}}{\textup{3600}}

= 0.319 m³/s

8 0
3 years ago
An assembly line produces 20 items per hour . If the line runs 24 hours per day, 7days week ,how many items are made by this mac
Leya [2.2K]

All you do is do 20 x 24 x 30. You get 600 X 24 which is 14,400, or C.





3 0
2 years ago
Help please on this question. I appreciate it =) <br><br> more than one answer
velikii [3]
I'm pretty sure A, and C but I'm not very sure about B I hope that helped.
4 0
3 years ago
Other questions:
  • James measured his hand. It was 0.17 meter. Jennifer measured her hand. It was 0.165 meter. Whose hand is bigger? How do you kno
    15·1 answer
  • A small business earns a profit of 6500 in January and 17500 in may what is the rate of change in profit for this time period
    13·1 answer
  • What is the equation of the axis of symmetry for the parabola y=-1/2(x+3)^2-5
    6·1 answer
  • Matt starts 9 ft from a motion detector. He walks towards the motion detector at a constant rate of 1 1/2 feet per sec. How many
    11·1 answer
  • Help me plz i dont wanna fail yall can get 10 pts
    12·2 answers
  • A line passes through the points (4, 19) and (9, 24). Write a linear function in the form y=mx+b for this line
    7·1 answer
  • Find the equation of the line parallel to y=4x+1 that also intersects the point (1,1)<br><br> y=4x+?
    13·1 answer
  • Restaurateur Denny Valentine is evaluating two sites, Raymondville and Rosenberg, for his next restaurant. He wants to prove tha
    12·1 answer
  • Which expressions are equivalent to 25x4 −64? Select three options. 25x4 + 40x − 40x − 64 25x4 + 13x − 13x − 64 (5x2 + 8)(5x2 −
    8·2 answers
  • Help??<br><br><br><br> (Ignore the answer choice I selected did that on accident)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!