let's change some the 0.1 to say 1/10, just the fraction version of it.

![\bf \cfrac{-10x-1}{-10x^3-x^2}\implies \cfrac{-10\left( \frac{1}{10} \right)-1}{-10\left( \frac{1}{10} \right)^3-\left( \frac{1}{10} \right)^2}\implies \cfrac{-1-1}{-\frac{1}{100}-\frac{1}{100}}\implies \cfrac{-2}{\frac{-2}{100}} \\\\\\ \cfrac{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\cdot \cfrac{100}{~~\begin{matrix} -2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 100](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B-10x-1%7D%7B-10x%5E3-x%5E2%7D%5Cimplies%20%5Ccfrac%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29-1%7D%7B-10%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E3-%5Cleft%28%20%5Cfrac%7B1%7D%7B10%7D%20%5Cright%29%5E2%7D%5Cimplies%20%5Ccfrac%7B-1-1%7D%7B-%5Cfrac%7B1%7D%7B100%7D-%5Cfrac%7B1%7D%7B100%7D%7D%5Cimplies%20%5Ccfrac%7B-2%7D%7B%5Cfrac%7B-2%7D%7B100%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B100%7D%7B~~%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Cimplies%20100)
when checking an absolute value expression, we do the one-sided limits, since an absolute value expression is in effect a piecewise function with ± versions, so for the limit from the left we check the negative version.
130 degrees!That should be your answer. :) Hope i helped
Answer:
The answer is “B”
Step-by-step explanation:
Group and factor out the greatest common factor (GCF), then combine.
Answer:
72 Newtons
Step-by-step explanation: