Answer:
The word "ARRANGE" can be arranged in
2!×2!
7!
=
4
5040
=1260 ways.
For the two R's do occur together, let us make a group of R's taking from "ARRANGE" and permute them.
Then the number of ways =
2!
6!
=360.
The number ways to arrange "ARRANGE", where two "R's" will not occur together is =1260−360=900.
Also in the same way, the number of ways where two "A's" are together is 360.
The number of ways where two "A's" and two "R's" are together is 5!=120.
The number of ways where neither two "A's" nor two "R's" are together is =1260−(360+360)+120=660.
Step-by-step explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> ME</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART'AND</u><u> SOUL</u><u> DARLING</u><u> TEJASVINI</u><u> SINHA</u><u> HERE</u><u> ❤️</u></h2>
Answer:
5 lines we can draw using 2 points
The answer would be 73 remainder 0 if rounded to one decimal place
interior angle of a regular 18-gon.
It is easier to calculate the exterior angle of a regular polygon of n-sides (n-gon) by the relation
exterior angle = 360/n
For a 18-gon, n=18, so exterior angle = 360/18=20 °
The value of each interior angle is therefore the supplement, or
Interior angle = 180-20=160 degrees.
Naming of a 9-gon
A polygon with 9 vertices is called a nonagon (in English) or enneagon (French ennéagone, but the English version is sometimes used)
You had a good start with the correct answer.
Exterior angle of a 15-gon
The exterior angle of a 15-gon can be calculated using the relation given in the first paragraph, namely
Exterior angle = 360/15=24 degrees