Given Information:
Mean SAT score = μ = 1500
Standard deviation of SAT score = σ = 3
00
Required Information:
Minimum score in the top 10% of this test that qualifies for the scholarship = ?
Answer:

Step-by-step explanation:
What is Normal Distribution?
We are given a Normal Distribution, which is a continuous probability distribution and is symmetrical around the mean. The shape of this distribution is like a bell curve and most of the data is clustered around the mean. The area under this bell shaped curve represents the probability.
We want to find out the minimum score that qualifies for the scholarship by scoring in the top 10% of this test.

The z-score corresponding to the probability of 0.90 is 1.28 (from the z-table)

Therefore, you need to score 1884 in order to qualify for the scholarship.
How to use z-table?
Step 1:
In the z-table, find the probability value of 0.90 and note down the value of the that row which is 1.2
Step 2:
Then look up at the top of z-table and note down the value of the that column which is 0.08
Step 3:
Finally, note down the intersection of step 1 and step 2 which is 1.28
9y-8y-y= 9-8-1 = 0y =0
subtract all like terms
To find the number of years between 1844 to 2015 you have to subtract.
Lets say that x is the # of years in between 1844 and 2015
Then we have:

After doing the subtraction using a calculator or a pencil and paper, you get that:

So 171 years have passed from 1844 to reach to 2015.
Answer:
62
Step-by-step explanation: