The angle between u = (-2,-5) and v = (5,2) is 134 degrees approximately.
<u>Solution:</u>
Given, two vectors are u = (-2, -5) and v = (5, 2)
We have to find the angle between two vectors.
We know that,
![a. b=\|a\| .\|b\| \times \cos \theta](https://tex.z-dn.net/?f=a.%20b%3D%5C%7Ca%5C%7C%20.%5C%7Cb%5C%7C%20%5Ctimes%20%5Ccos%20%5Ctheta)
where
is angle between vectors a and b
![\text { Now vectors are }(-2 \vec{\imath}-5 \vec{\jmath}) \text { and }(5 \vec{\imath}+2 \vec{\jmath})](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Now%20vectors%20are%20%7D%28-2%20%5Cvec%7B%5Cimath%7D-5%20%5Cvec%7B%5Cjmath%7D%29%20%5Ctext%20%7B%20and%20%7D%285%20%5Cvec%7B%5Cimath%7D%2B2%20%5Cvec%7B%5Cjmath%7D%29)
![(-2 \vec{\imath}-5 \vec{\jmath}) \cdot(5 \vec{\imath}+2 \vec{\jmath})=\sqrt{(-2)^{2}+(-5)^{2}} \times \sqrt{5^{2}+2^{2}} \times \cos \theta](https://tex.z-dn.net/?f=%28-2%20%5Cvec%7B%5Cimath%7D-5%20%5Cvec%7B%5Cjmath%7D%29%20%5Ccdot%285%20%5Cvec%7B%5Cimath%7D%2B2%20%5Cvec%7B%5Cjmath%7D%29%3D%5Csqrt%7B%28-2%29%5E%7B2%7D%2B%28-5%29%5E%7B2%7D%7D%20%5Ctimes%20%5Csqrt%7B5%5E%7B2%7D%2B2%5E%7B2%7D%7D%20%5Ctimes%20%5Ccos%20%5Ctheta)
![\text { since }\|a\|=\sqrt{x^{2}+y^{2}} \text { for } a=x \vec{\imath}+y \vec{\jmath}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20since%20%7D%5C%7Ca%5C%7C%3D%5Csqrt%7Bx%5E%7B2%7D%2By%5E%7B2%7D%7D%20%5Ctext%20%7B%20for%20%7D%20a%3Dx%20%5Cvec%7B%5Cimath%7D%2By%20%5Cvec%7B%5Cjmath%7D)
![\begin{array}{l}{-10-10=\sqrt{29} \times \sqrt{29} \times \cos \theta} \\\\ {-20=29 \times \cos \theta} \\\\ {\cos \theta=\frac{-20}{29}} \\\\ {\theta=\cos ^{-1} \frac{-20}{29}} \\\\ {\theta=133.60}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B-10-10%3D%5Csqrt%7B29%7D%20%5Ctimes%20%5Csqrt%7B29%7D%20%5Ctimes%20%5Ccos%20%5Ctheta%7D%20%5C%5C%5C%5C%20%7B-20%3D29%20%5Ctimes%20%5Ccos%20%5Ctheta%7D%20%5C%5C%5C%5C%20%7B%5Ccos%20%5Ctheta%3D%5Cfrac%7B-20%7D%7B29%7D%7D%20%5C%5C%5C%5C%20%7B%5Ctheta%3D%5Ccos%20%5E%7B-1%7D%20%5Cfrac%7B-20%7D%7B29%7D%7D%20%5C%5C%5C%5C%20%7B%5Ctheta%3D133.60%7D%5Cend%7Barray%7D)
Hence, the angle between given two vectors is 134 degrees approximately.
<span>–2.75 > –3
answer is </span><span>B. ></span>
Answer:
3x^2−4x−4
Step-by-step explanation:
3x^2−8x−2+4x−2
=3x^2+−8x+−2+4x+−2
3x^2+−8x+−2+4x+−2
=(3x^2)+(−8x+4x)+(−2+−2)
=3x^2+−4x+−4
The anwser is 7 your welcome!