Answer:
(a) <em>z</em> = 0.53
(b) <em>z</em> -0.67
(c) <em>z</em> = -0.84
(d) <em>z</em> = 0.26
Explanation:
A standard normal distribution has mean 0 and standard deviation 1.
(a)
Compute the value of <em>z</em> for P (<em>Z</em> < <em>z</em>) = 0.70 as follows:
Consider the<em> </em>standard normal table for the value of <em>z.</em>
The value of <em>z</em> is 0.53.
(b)
Compute the value of <em>z</em> for P (<em>Z</em> < <em>z</em>) = 0.25 as follows:
Consider the<em> </em>standard normal table for the value of <em>z.</em>
The value of <em>z</em> is -0.67.
(c)
Compute the value of <em>z</em> for P (<em>Z</em> > <em>z</em>) = 0.20 as follows:
P (Z > z) = 0.20
1 - P (Z < z) = 0.20
P (Z < z) = 0.80
Consider the<em> </em>standard normal table for the value of <em>z.</em>
The value of <em>z</em> is -0.84.
(d)
Compute the value of <em>z</em> for P (<em>Z</em> > <em>z</em>) = 0.60 as follows:
P (Z > z) = 0.60
1 - P (Z < z) = 0.60
P (Z < z) = 0.40
Consider the<em> </em>standard normal table for the value of <em>z.</em>
The value of <em>z</em> is 0.26.