1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
10

30 POINTS A student answered the question, 3 1/2 ÷ 5 4/9. He got the answer 15 9/8. What did he do wrong.

Mathematics
1 answer:
AleksAgata [21]3 years ago
4 0

Answer:

He multiplied the whole numbers and  divided the fractions

Step-by-step explanation:

3 1/2 ÷ 5 4/9

change the mixed numbers to improper fractions

3 1/2 = (2*3 +1)/2 =7/2

5 4/9 = (9*5+4)/9 =49/9

7/2 ÷ 49/9

copy dot flip

7/2 * 9/49

rewrite

7/49 * 9/2

1/7 * 9/2

9/14

You might be interested in
What is the equation of the line parallel to the line with the equation −x+3y=−3
mezya [45]

Answer:

y = 1/3x - 19/3

Step-by-step explanation:

3y = x -3

y = 1/3x -3

Slope = 1/3

Point= (1,-6)

y-intercept = -6 - (1/3)(1) = -6 - 1/3 = -19/3

5 0
2 years ago
3. Three resistors with values of 3 Ω, 4 Ω and 5 Ω are connected to a 12 V battery.
marysya [2.9K]

Answer:

I think it's 4

Step-by-step explanation:

Three resistors with values of 12 Ω, 24 Ω and 6 Ω are connected in series to one another and a 24 V power supply. Draw the circuit and fill in the data table.

3 0
3 years ago
Determine whether each equation represents a proportional relationship.<br> y=2.5x<br> y=x−4
mamaluj [8]

Answer:

yes

no

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Can someone please help me with these 7 questions please?
yarga [219]

(1)\ (-xy)^3(xz)

Expand

(-xy)^3(xz) = (-x)^3* y^3*(xz)

(-xy)^3(xz) = -x^3* y^3*xz

Rewrite as:

(-xy)^3(xz) = -x^3*x* y^3*z

Apply law of indices

(-xy)^3(xz) = -x^4y^3z

(2)\ (\frac{1}{3}mn^{-4})^2

Expand

(\frac{1}{3}mn^{-4})^2 =(\frac{1}{3})^2m^2n^{-4*2}

(\frac{1}{3}mn^{-4})^2 =\frac{1}{9}m^2n^{-8

(3)\ (\frac{1}{5x^4})^{-2}

Apply negative power rule of indices

(\frac{1}{5x^4})^{-2}= (5x^4)^2

Expand

(\frac{1}{5x^4})^{-2}= 5^2x^{4*2}

(\frac{1}{5x^4})^{-2}= 25x^{8

(4)\ -x(2x^2 - 4x) - 6x^2

Expand

-x(2x^2 - 4x) - 6x^2 = -2x^3 + 4x^2 - 6x^2

Evaluate like terms

-x(2x^2 - 4x) - 6x^2 = -2x^3 -2x^2

Factor out x^2

-x(2x^2 - 4x) - 6x^2 = (-2x-2)x^2

Factor out -2

-x(2x^2 - 4x) - 6x^2 = -2(x+1)x^2

(5)\ \sqrt{\frac{4y}{3y^2}}

Divide by y

\sqrt{\frac{4y}{3y^2}} = \sqrt{\frac{4}{3y}}

Split

\sqrt{\frac{4y}{3y^2}} = \frac{\sqrt{4}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}}

Rationalize

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}} * \frac{\sqrt{3y}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2\sqrt{3y}}{3y}

(6)\ \frac{8}{3 + \sqrt 3}

Rationalize

\frac{8}{3 + \sqrt 3} = \frac{3 - \sqrt 3}{3 - \sqrt 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{(3 + \sqrt 3)(3 - \sqrt 3)}

Apply different of two squares to the denominator

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{3^2 - (\sqrt 3)^2}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{9 - 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{6}

Simplify

\frac{8}{3 + \sqrt 3} = \frac{4(3 - \sqrt 3)}{3}

(7)\ \sqrt{40} - \sqrt{10} + \sqrt{90}

Expand

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4*10} - \sqrt{10} + \sqrt{9*10}

Split

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4}*\sqrt{10} - \sqrt{10} + \sqrt{9}*\sqrt{10}

Evaluate all roots

\sqrt{40} - \sqrt{10} + \sqrt{90} =2*\sqrt{10} - \sqrt{10} + 3*\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =2\sqrt{10} - \sqrt{10} + 3\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =4\sqrt{10}

(8)\ \frac{r^2 + r - 6}{r^2 + 4r -12}

Expand

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r^2 + 3r-2r - 6}{r^2 + 6r-2r -12}

Factorize each

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r(r + 3)-2(r + 3)}{r(r + 6)-2(r +6)}

Factor out (r+3) in the numerator and (r + 6) in the denominator

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{(r -2)(r + 3)}{(r - 2)(r +6)}

Cancel out r - 2

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r + 3}{r +6}

(9)\ \frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14}

Cancel out x

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 5x - 14}

Expand the numerator of the 2nd fraction

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 7x+2x - 14}

Factorize

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x(x - 7)+2(x - 7)}

Factor out x - 7

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Factor out 4 from 4x + 8

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4(x + 2)}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Cancel out x + 2

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x} \cdot \frac{1}{(x - 7)}

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x(x - 7)}

(10)\ (3x^3 + 15x^2 -21x) \div 3x

Factorize

(3x^3 + 15x^2 -21x) \div 3x = 3x(x^2 + 5x -7) \div 3x

Cancel out 3x

(3x^3 + 15x^2 -21x) \div 3x = x^2 + 5x -7

(11)\ \frac{m}{6m + 6} - \frac{1}{m+1}

Take LCM

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m(m + 1) - 1(6m + 6)}{(6m + 6)(m + 1)}

Expand

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 + m- 6m - 6}{(6m + 6)(m + 1)}

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 - 5m - 6}{(6m + 6)(m + 1)}

(12)\ \frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}}

Rewrite as:

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} \div \frac{2}{y^2 - 9}

Express as multiplication

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 9}{2}

Express y^2 - 9 as y^2 - 3^2

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 3^2}{2}

Express as difference of two squares

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{(y - 3)(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{1} * \frac{(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{y+3}{2}

Read more at:

brainly.com/question/4372544

3 0
2 years ago
Alex has 84 quarters and nickels worth a total of $17.80.
Hunter-Best [27]

The equation which can be used to find the number of quarters and nickels is; n + q = 84, 0.05n + 0.25q = 17.80.

<h3>Quarters and nickels</h3>

  • Total coins = 84
  • Total value = $17.80

let

  • Number of quarters = q
  • Number of nickels = n

n + q = 84

0.05n + 0.25q = 17.80

From equation (1)

n = 84 - q

Substitute into (2)

0.05n + 0.25q = 17.80

0.05(84 - q) + 0.25q = 17.80

4.2 - 0.05q + 0.25q = 17.80

- 0.05q + 0.25q = 17.80 - 4.2

0.20q = 13.60

q = 13.60 / 0.20

q = 68

Substitute q = 68 into

n + q = 84

n + 68 = 84

n = 84 - 68

n = 16

Therefore, the number of quarters and nickels are 68 and 16 respectively.

Learn more about quarters and nickels:

brainly.com/question/17127685

#SPJ1

6 0
2 years ago
Other questions:
  • Given four functions, place them in order of their y-intercept, from highest to lowest.
    9·2 answers
  • Rich bought two baseballs for $ 4 each and two basketballs for $ 22 each. Use the distributive property to find the total cost.?
    14·2 answers
  • The observation deck is about 20 m above sea level. From the observation deck, the angle of depression of the boat is 6 degrees.
    15·1 answer
  • -8 (1+11a)?????????????????
    6·2 answers
  • How do I do #11? (Each part of it)
    7·1 answer
  • Find the value of the trigonometric ratio.<br> Answer has to be a reduced ratio.<br> PLS HELP!!
    13·1 answer
  • 1. ab=l (solve for a)
    13·1 answer
  • Please round to nearest hundredth and give explanation.
    7·1 answer
  • PLEASE HELP ME, ILL GIVE BRAINLIEST AND 50 POINTS
    12·2 answers
  • On mr robinsons last history test for this marking period. the average score was 98. Fourty students took the test and 39 studen
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!