Answer: 
<u>Step-by-step explanation:</u>
It is given that θ is between 270° and 360°, which means that θ is located in Quadrant IV ⇒ (x > 0, y < 0). Furthermore, the half-angle will be between 135° and 180°, which means the half-angle is in Quadrant II ⇒
It is given that sin θ =
⇒ y = -7 & hyp = 25
Use Pythagorean Theorem to find "x":
x² + y² = hyp²
x² + (-7)² = 25²
x² + 49 = 625
x² = 576
x = 24
Use the "x" and "hyp" values to find cos θ:
Lastly, input cos θ into the half angle formula:

Reminder: We previously determined that the half-angle will be negative.
Answer: 40.15
Step-by-step explanation: 40.15 IS LESS THEN 48.60
Based on the lengths of the given triangles and the length of segment BD, the length of segment AD is 22.20.
<h3>What is the length of segment AD?</h3>
The triangle ABC is a right angled triangle with segment AB being the hypothenuse.
We can therefore find this length using the Pythagoras Rule:
Hypothenuse ² = a² + b²
Hypothenuse ² = 28.6² + 23.2²
Hypothenuse ² = 1,356.20
Hypothenuse = √1,356.20
= 36.83
Length of AD:
= AB - BD
= 36.83 - 14.60
= 22.2
Find out more on the Pythagorean theorem at brainly.com/question/343682.
#SPJ1