1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
3 years ago
8

At a border inspection station, vehicles arrive at the rate of 10 per hour in a Poisson distribution. For simplicity in this pro

blem, assume there are only one lane and one inspector, who can inspect vehicles ar the rate of per hour in an exponentially distributed fashion.
A. What is the average length or the waiting line?
B. What is the average total time it takes for a vehicle to get through the system?
C. What is the utilization of the inspector?
D. What is the probability that when you arrive there will be three or more vehicles ahead of you?
Mathematics
1 answer:
7nadin3 [17]3 years ago
8 0

Answer:

no❤️Step-by-step explanation:

You might be interested in
Solve x-3/6 divided by 3-x/2 Please show work
Nataly_w [17]
\cfrac{x-3}{6}: \cfrac{3-x}{2}  = -\cfrac{3-x}{6}*\cfrac{2}{3-x}  =- \cfrac{2}{6}=- \cfrac{1}{3}
4 0
3 years ago
What is the size of the tv when it’s 66 inches long and 56 inches tall
aleksklad [387]
Area= 3696in squared
Perimeter= 244in
3 0
3 years ago
Will the ordered pairs listed in the table form a straight line when plotted? Explain your reasoning.
mrs_skeptik [129]

Answer:

Yes.

Step-by-step explanation:

If the slope between successive points have the same slope then they will form a straight line.

Slope = ( 3.5- -1) / (-2 - -8) = 4.5/6  = 3/4

Slope = (12.5 - 3.5) / (10 - -2) = 9 / 12 = 3/4

Slope = (20-12.5)/(20-10) - 7.5/10 = 3/4 .

So the answer is yes.

4 0
3 years ago
Will give brainliest, thanks, and 5 stars! LOTS OF POINTS! 50 POINTS!
sweet-ann [11.9K]

Answer/Step-by-step explanation:

 All of the solutions to the equation 3x^2 - 12 = 0 are x = 12 and x = -2

Answer: False

Explanation:

3x^2-12+12=0+12

3x^2=12

\frac{3x^2}{3}=\frac{12}{3}

x^2=4

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{4},\:x=-\sqrt{4}

x=2,\:x=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two unique solutions to the equations (x-3)^2 = 16

Note: Each variable in the matrix can have only one possible value, and this is how you know that this matrix has one unique solution.

Answer: True

Explanation:

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ths solutions for the equation 2(x-3)^3 - 18 = 0 are x = 6 and x = 0

Answer: False

Explanation:

2\left(x-3\right)^3-18+18=0+18

2\left(x-3\right)^3=18

\frac{2\left(x-3\right)^3}{2}=\frac{18}{2}

\left(x-3\right)^3=9

\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}

=\sqrt[3]{9}+3,\:x=\frac{6-\sqrt[3]{9}}{2}+i\frac{\sqrt[3]{9}\sqrt{3}}{2},\:x=\frac{6-\sqrt[3]{9}}{2}-i\frac{\sqrt[3]{9}\sqrt{3}}{2}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~The solutions for the equation 2(x-5)^2-8=0 are x = 7 and x = -7

Answer: False

Explanation:

2\left(x-5\right)^2-8+8=0+8

2\left(x-5\right)^2=8

\frac{2\left(x-5\right)^2}{2}=\frac{8}{2}

\left(x-5\right)^2=4

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation (x + 3)^2-25 = -8 are x = 2 and x = -8

Answer: False

Explanation:

\left(x+3\right)^2-25+25=-8+25

\left(x+3\right)^2=17

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{17}-3,\:x=-\sqrt{17}-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 2(2x-1)^2=18 are x = 5 and x = -4

Answer: False

Explanation:

\frac{2\left(2x-1\right)^2}{2}=\frac{18}{2}

\left(2x-1\right)^2=9

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=2,x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The only solution for equation (2x-1)^2-49=0 is x = 4

Answer: False
Explanation:

\left(2x-1\right)^2-49+49=0+49

\left(2x-1\right)^2=49

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=4,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 3(x+2)^2 - 3 = 0 are x = -3 and x = -1

Answer: True
Explanation:

3\left(x+2\right)^2-3+3=0+3

3\left(x+2\right)^2=3

\frac{3\left(x+2\right)^2}{3}=\frac{3}{3}

\left(x+2\right)^2=1

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=-1,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 5x^2 - 180 = 0 are x = 6 and x  = -6

Answer: True

Explanation:

5x^2-180+180=0+180

5x^2=180

\frac{5x^2}{5}=\frac{180}{5}

x^2=36

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{36},\:x=-\sqrt{36}

x=6,\:x=-6

<u><em>~Lenvy~</em></u>

7 0
2 years ago
Find the coordinates for the midpoint of the segment with endpoints given. (5,6) and (8,2)​
likoan [24]

\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{5}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{2}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{8+5}{2}~~,~~\cfrac{2+6}{2} \right)\implies \left( \cfrac{13}{2}~,~\cfrac{8}{2} \right)\implies \left(6\frac{1}{2}~,~4 \right)

6 0
3 years ago
Other questions:
  • Use the unique factorization of integers theorem to prove the following statement. If n is any positive integer that is not a pe
    12·1 answer
  • What’s the degree of 3?
    12·1 answer
  • One year there was a total of 73 commercial and noncommercial orbital launches worldwide. In​ addition, the number of noncommerc
    8·1 answer
  • The Benson family drove 216 miles on the family vacation they used 7.6 gallons of gas how many miles per gallon of gas in daycar
    8·1 answer
  • Could someone help me
    11·1 answer
  • Solve the question, thank you
    14·2 answers
  • Find the product of (5ab)(2ab)
    13·2 answers
  • Label the transformation of the original figure.
    13·1 answer
  • Select the correct answer from the drop-down menu.
    15·1 answer
  • Solve for x.<br> 3(x + 5)-2(x+2)=20<br> 1<br> 9<br> 13
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!