Answer:
Step-by-step explanation:
100(97/100)=97 puppies.
1). The 2 angles add up to 180 degrees.
2). And 3). The 2 angles are equal.
Prove we are to prove 4(coshx)^3 - 3(coshx) we are asked to prove 4(coshx)^3 - 3(coshx) to be equal to cosh 3x
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2 = e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2 = e^(3x) /2 + e^(-3x) /2 = cosh(3x) = LHS Since y = cosh x satisfies the equation if we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work.
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3, Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2 = (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3) to be equ
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2
= e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2
= e^(3x) /2 + e^(-3x) /2
= cosh(3x)
= LHS
<span>Therefore, because y = cosh x satisfies the equation IF we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work. </span>
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3,
Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2
= (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3)
Using the square root and the given trinomial what is the answer to this hard problem
Anything that is close to.
Because $27- 3*$5 - 2*6 = 0 and $5*2 +1 *$6 = $16, $27-$16 = $11 left over. I can make a system of equations to prove that this is the correct answer.