Answer:
Step-by-step explanation:
According to the chart for the values of x (input) the corresponding values of y (output) are given.
The slope of the equation is constant and given by
.
If we want to check the slope to be constant then we can use the table and the values of x and y.
The first point (
) ≡ (-2,3)
The second point (
) ≡ (8,-2)
The third point (
) ≡ (10,-3)
The fourth point (
) ≡ (20,-8)
Now, we can check that slope of the straight line is constant for all those values.
![\frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{- 2 - 3}{8 - (- 2)} = - \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D%20%3D%20%5Cfrac%7B-%202%20-%203%7D%7B8%20-%20%28-%202%29%7D%20%3D%20-%20%5Cfrac%7B1%7D%7B2%7D)
![\frac{y_{3} - y_{2}}{x_{3} - x_{2}} = \frac{- 3 - (- 2)}{10 - 8} = - \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7By_%7B3%7D%20-%20y_%7B2%7D%7D%7Bx_%7B3%7D%20-%20x_%7B2%7D%7D%20%3D%20%5Cfrac%7B-%203%20-%20%28-%202%29%7D%7B10%20-%208%7D%20%3D%20-%20%5Cfrac%7B1%7D%7B2%7D)
![\frac{y_{4} - y_{3}}{x_{4} - x_{3}} = \frac{- 8 - (- 3)}{20 - 10} = - \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7By_%7B4%7D%20-%20y_%7B3%7D%7D%7Bx_%7B4%7D%20-%20x_%7B3%7D%7D%20%3D%20%5Cfrac%7B-%208%20-%20%28-%203%29%7D%7B20%20-%2010%7D%20%3D%20-%20%5Cfrac%7B1%7D%7B2%7D)
Now, Let us assume that the equation of the straight line is
....... (1)
Now, we have to find the value of c.
This straight line passes through (
) ≡ (-2,3) point.
So, the value of c can be calculated from the equation (1) as, c = 3 - 1 = 2
Therefore,
is the required equation. (Answer)