1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
14

A surfboard is on sale for 60% off the sale price is $199.00. What was the original price of the surfboard before the sale?

Mathematics
2 answers:
NeX [460]3 years ago
7 0

A surfboard is on sale for 60%

sale price is $199.00

Let the original price be x then

we can write

\\ \ x-\frac{60}{100}x=199\\ \\ \ \Rightarrow \frac{100x-60x}{100}=199\\ \\ \ \Rightarrow \frac{40x}{100}=199\\ \\ \ \Rightarrow 40x=199*100\\ \\ \ \Rightarrow x=\frac{19900}{40}=497.5\\

Ivahew [28]3 years ago
3 0

If the sale is of 60% it means that it is being sold for:

100 - 60 = 40%

Now use the rule of three to find the answer:

40 - 199

100- x

(100 * 199) / 40 = x

19900 / 40 = x

497,5 = x

Answer:

\boxed{\bf~The~original~price~is~497,5~dollars.}

Hope it helped,

Happy homework/ study/ exam!

You might be interested in
To complete this component you will need to insert parentheses in Expression 2 to change the order of operations so the expressi
Alika [10]

Given:

The expression is 5+4\times 2+6-2\times 2-1.

To find:

The position of parentheses inserted in the expression to get the value 19

Step-by-step explanation:

We have,

5+4\times 2+6-2\times 2-1

Now,

(5+4)\times 2+6-2\times 2-1=9\times 2+6-4-1

(5+4)\times 2+6-2\times 2-1=18+6-5

(5+4)\times 2+6-2\times 2-1=18+1

(5+4)\times 2+6-2\times 2-1=19

There are more ways to apply the parenthesis, but we do not get 19.

5+4*\left(2+6\right)-2*2-1=32\neq 19

5+4*2+\left(6-2\right)*2-1=20\neq 19

5+4*2+6-2*\left(2-1\right)=17\neq 19

And many more possibilities.

Therefore, the expression after inserting the parentheses is (5+4)\times 2+6-2\times 2-1.

6 0
3 years ago
Which of the following describes a net of the prism
Grace [21]

The answer is C

Explanation; there are 2 triangles and 3 rectangles

7 0
3 years ago
Read 2 more answers
Simplify -6x(9-12) ??
olga55 [171]
18x. Is your answer. :)
6 0
3 years ago
Read 2 more answers
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
3 years ago
Find the Area of the parallelogram 14cm 1 12cm​
Black_prince [1.1K]

Answer:

1568 cm

Step-by-step explanation:

Base x Height = Area

14 x 112 = 1568

4 0
3 years ago
Other questions:
  • This is for my math review due tomorrow I need help!!
    13·1 answer
  • Please help me solve this question
    11·1 answer
  • What is the greatest common factor of 60 and 72
    13·1 answer
  • 2x4-5x3-2x2+8x-1/2x-1
    6·1 answer
  • What is the vertex of y=1/2(x+4)^2+1
    13·1 answer
  • 25.7% as a fraction<br> plz help
    14·1 answer
  • Find the slope of the line 2x +5y=7
    6·1 answer
  • What is the circumference of a child's swimming pool that has a radius of 3 feet
    7·1 answer
  • If you are an expert in your field, the purpose of your presentation will remain the same for all types of presentations.
    12·2 answers
  • Connie has to solve the following problem.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!