We obtain the joint PMF directly from the joint MGF:

![\implies\mathrm{Pr}[X=x,Y=y]=\begin{cases}0.1&\text{for }x=y=0\\0.2&\text{for }x=1,y=0\\0.3&\text{for }x=0,y=1\\0.4&\text{for }x=y=1\\0&\text{otherwise}\end{cases}](https://tex.z-dn.net/?f=%5Cimplies%5Cmathrm%7BPr%7D%5BX%3Dx%2CY%3Dy%5D%3D%5Cbegin%7Bcases%7D0.1%26%5Ctext%7Bfor%20%7Dx%3Dy%3D0%5C%5C0.2%26%5Ctext%7Bfor%20%7Dx%3D1%2Cy%3D0%5C%5C0.3%26%5Ctext%7Bfor%20%7Dx%3D0%2Cy%3D1%5C%5C0.4%26%5Ctext%7Bfor%20%7Dx%3Dy%3D1%5C%5C0%26%5Ctext%7Botherwise%7D%5Cend%7Bcases%7D)
Then
![\mathrm{Pr}[X=Y]=\mathrm{Pr}[X=Y=0]+\mathrm{Pr}[X=Y=1]=0.1+0.4=\boxed{0.5}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BX%3DY%5D%3D%5Cmathrm%7BPr%7D%5BX%3DY%3D0%5D%2B%5Cmathrm%7BPr%7D%5BX%3DY%3D1%5D%3D0.1%2B0.4%3D%5Cboxed%7B0.5%7D)
Answer:
B
Step-by-step explanation:
3 x -9 which is -27. Then you have to add the exponents, so it will be x^4+2 = x^6 , y^3+2 = y^5, z^1+2 = z^3. so your answer will be -27 x^6 y^5 z^3
Hi there!
The formula for the volume of a sphere is V = 4/3(pi)(r^3). Using this formula, we can plug in what we know and solve.
WORK:
V = 4/3(pi)(10^3)
V = 4/3(1000pi)
V = 4000pi/3 or 1333.3 pi
V also = 4188.8
Hope this helps!! :)
If there's anything else that I can help you with, please let me know!
Answer:
Rise: 200.25
Descent 300.2
Minutes
Step-by-step explanation:
A) We are using the Pythagorean theorem for the climb and descent. (a^2 + b^2 = c^2)
For climb a = 200, b = 10 c = ?
200^2 + 10^2 = c^2 = 40000 + 100 = c^2 = 40100 = c^2
c = about 200.25
For the descent: a = 300, b = 10
300²+10² = c²
90000 + 100 = c²
90100 = c²
c = about 300.2
B) If a plane is going 600 km/h and it goes about 10 km that means the plane is only going for 10/600 of an hour.
10/600 is 1/60, so only a couple minutes difference.
Answer:
It means
also converges.
Step-by-step explanation:
The actual Series is::

The method we are going to use is comparison method:
According to comparison method, we have:

If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
![=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bn%5E2%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E6%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E4%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D)
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Csum_%7Bn%3D1%7D%5E%7Binf%7Db_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%20%5Cfrac%7B1%7D%7Bn%5E4%7D)
Now:
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%20%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%3D%5Cfrac%7B7-%5Cfrac%7B4%7D%7Binf%7D%2B%5Cfrac%7B3%7D%7Binf%7D%7D%7B%5Cfrac%7B12%7D%7Binf%7D%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B7%7D%7B2%7D)
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:

if p>1 then series converges. In oue case we have:

p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means
also converges.