Largeur = x
longueur = 4 x
2 ( x + 4 x) = 20
2 x + 8 x = 20
10 x =20
x = 2
largeur = 2 et longueur = 8
Answer:



Step-by-step explanation:
When given the following functions,
![g=[(-2,-7),(4,6),(6,-8),(7,4)]](https://tex.z-dn.net/?f=g%3D%5B%28-2%2C-7%29%2C%284%2C6%29%2C%286%2C-8%29%2C%287%2C4%29%5D)

One is asked to find the following,
1. Question 1

When finding the inverse of a function that is composed of defined points, one substitutes the input given into the function, then finds the output. After doing so, one must substitute the output into the function, and find its output. Thus, finding the inverse of the given input;


2. Question 2

Finding the inverse of a continuous function is essentially finding the opposite of the function. An easy trick to do so is to treat the evaluator (h(x)) like another variable. Solve the equation for (x) in terms of (h(x)). Then rewrite the equation in inverse function notation,


3. Question 3

This question essentially asks one to find the composition of the function. In essence, substitute function (h) into function (
) and simplify. Then substitute (-3) into the result.


Now substitute (-3) in place of (x),

This problem can be solved using two equations:
The first represents the total trip, which is the miles driven in the morning added to those in the afternoon. Let's call the hours driven in the morning X and the hours driven in the afternoon Y. We get: X + Y = 248.
The second equation relates the miles driven in the morning compared to the afternoon. Since 70 fewer miles were driven in the morning than the afternoon, then X = Y - 70.
Now substitute the equation for morning hours (equation 2) into the total miles equation (equation 1). We get:
(Y - 70) + Y = 248
2Y - 70 = 248
2Y = 318
Y = 159
We know that Winston drove 159 miles in the afternoon.
To find the morning hours, just substitute 159 into the equation for morning hours (equation 2)
X = 159 - 70
X = 89
We now know that Winston drove 89 miles in the morning.
We can check our work by plugging both distances into the total distance equation: 89 + 159 = 248
To find the Chebyshev's inequality, P | Xn - E(X)| <= δ/4 >= 1 - (δ^2/25)/(δ^2/16) = 1 - (16/25) = 9/25 = 0.36
The answer in this question which is the probability that the average of the physicist's measurement is within δ/4 units of the actual specific gravity is at least 0.36%