Answer:
a. [-3, 4]
b. (-inf, -3]
c. [4, inf)
Step-by-step explanation:
Our intervals will represent the x-values
We know that since there's an arrow pointing to the left of the line that it goes on infinitely
Same thing when the arrow is going to the right
Then we can just looking at the x-values on the graph for the intervals where it starts and stops
Hope this helps
Best of luck
Answer: Choice B

======================================================
Explanation:
The two rules we use are


When applying the first rule to the expression your teacher gave you, we can say that:

Then applying the second rule lets us say

Therefore,

-------------
In short, we just multiplied each exponent inside by the outer exponent 1/2.
So that explains why the exponents go from {1/4,16} to {1/8,8} for x and y in that exact order.
Answer:
50.40% probability that all 4 are different.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Desired outcomes:
4 digits, all different
For the first digit, it can be any of them, so there are 10 possible
For the second digit, it can be any of them other than the first digit. So there are 9 possible.
For the third digit, it can be any of them, other than the first and the second. So there are 8 possible.
By the same logic, 7 possible digits for the fourth. So

Total outcomes:
4 digits, each can be any of them(10 from 0 - 9).
So

Probability:

50.40% probability that all 4 are different.
Answer:
This is very detailed as I wish to make some principles about fractions clear.
3
5
12
Explanation:
This question boils down to
3
2
3
−
1
4
A fractions structure is that of:
count
size indicator of what you are counting
→
numerator
denominator
You can not directly add or subtract the counts (numerators) unless the size indicators (denominators) are the same.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
3
2
3
Write as
3
+
2
3
Multiply by 1 and you do not change the value. However, 1 comes in many forms so you can change the way something looks without changing its true value
[
3
×
1
]
+
2
3
[
3
×
3
3
]
+
2
3
9
3
+
2
3
=
11
3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Putting it all together
3
2
3
−
1
4
→
11
3
−
1
4
But the size indicators are not the same. I chose to make them become 12
11
3
−
1
4
→
[
11
3
×
1
]
−
[
1
4
×
1
]
→
[
11
3
×
4
4
]
−
[
1
4
×
3
3
]
→
44
12
−
3
12
Now we may subtract the counts
→
44
−
3
12
=
41
12
But this is the same as
12
12
+
12
12
+
12
12
+
5
12
=
1
2
+
2
1
2
+
2
1
2
+
5
12
=
3
5
12
Step-by-step explanation: