The experimental probability of each event is as follows:
- Landing open side up = 1/50 = 0.02 = 2%.
- Landing closed side up = 5/50 = 1/10 = 0.1 = 10%.
- Landing on its side = 44/50 = 0.88 = 88%.
The experimental probability of an event is the ratio of the number of outcomes that favored the event to the total number of outcomes in the experiment.
In the question, we are given that Jake tossed a paper cup 50 times and recorded the position how it landed, which is shown in the table:
Open-sided up: 1
Closed side up 5
On the side: 44.
We are asked to determine the experimental probability of each outcome.
The number of outcomes, when the landing is open-sided up is 1.
The number of outcomes, when the landing is closed-sided up is 5.
The number of outcomes, when the landing is on the side up is 44.
The total number of times the experiment took place is 50.
Thus, the experimental probability of each event is as follows:
- Landing open side up = 1/50 = 0.02 = 2%.
- Landing closed side up = 5/50 = 1/10 = 0.1 = 10%.
- Landing on its side = 44/50 = 0.88 = 88%.
Learn more about the experimental probability at
brainly.com/question/24298250
#SPJ4
9514 1404 393
Answer:
4a. ∠V≅∠Y
4b. TU ≅ WX
5. No; no applicable postulate
6. see below
Step-by-step explanation:
<h3>4.</h3>
a. When you use the ASA postulate, you are claiming you have shown two angles and the side between them to be congruent. Here, you're given side TV and angle T are congruent to their counterparts, sides WY and angle W. The angle at the other end of segment TV is angle V. Its counterpart is the other end of segment WY from angle W. In order to use ASA, we must show ...
∠V≅∠Y
__
b. When you use the SAS postulate, you are claiming you have shown two sides and the angle between them are congruent. The angle T is between sides TV and TU. The angle congruent to that, ∠W, is between sides WY and WX. Then the missing congruence that must be shown is ...
TU ≅ WX
__
<h3>5.</h3>
The marked congruences are for two sides and a non-included angle. There is no SSA postulate for proving congruence. (In fact, there are two different possible triangles that have the given dimensions. This can be seen in the fact that the given angle is opposite the shortest of the given sides.)
"No, we cannot prove they are congruent because none of the five postulates or theorems can be used."
__
<h3>6.</h3>
The first statement/reason is always the list of "given" statements.
1. ∠A≅∠D, AC≅DC . . . . given
2. . . . . vertical angles are congruent
3. . . . . ASA postulate
4. . . . . CPCTC
reflexive postulate of equality
13 bus seats on each bus and 12 seats on each van