$17
17+11 = $28
28+11 = $39
39+11 = $50
17 + 11(n-1) $$
n-1 because removes the first class of $17
Answer:
£67.50
Step-by-step explanation:
On each metre of material, the shop makes a profit of ...
£6.90 -4.65 = £2.25
So, for 30 metres, the profit will total ...
30 × £2.25 = £67.50
A profit of £67.50 would be made on a 30-metre roll of material.
Answers:
- Discrete
- Continuous
- Discrete
- Continuous
==============================================
Explanations:
- This is discrete because we can't have half a basketball, or any non-whole decimal value to represent the number of basketballs. We can only consider positive whole numbers {1,2,3,4,...}. A discrete set like this has gaps between items. In other words, the midpoint of 2 and 3 (the value 2.5) isn't a valid number of basketballs.
- This is continuous because time values are continuous. We can take any two different markers in time, and find a midpoint between them. For example, the midpoint of 5 minutes and 17 minutes is 11 minutes since (5+17)/2 = 22/2 = 11. Continuous sets like this do not have any gaps between items. We can consider this to be densely packed.
- This is the same as problem 1, so we have another discrete function. You either score a bullseye or you don't. We can't score half a bullseye. The only possible values are {1,2,3,4,...}
- This is similar to problem 2. This function is continuous. Pick any two different positive real numbers to represent the amount of gallons of water. You will always be able to find a midpoint between those values (eg: we can have half a gallon) and such a measurement makes sense.
So in short, always try to ask the question: Can I pick two different values, compute the midpoint, and have that midpoint make sense? If so, then you're dealing with a continuous variable. Otherwise, the data is discrete.
The rule is 3x
so to find the next number you multiple the most recent one by 3
the next three are:
32.4, 97.2, 291.6
Answer:
Step-by-step explanation:
We are given a joint probability table.
There are four different graders in a school
1. Grade Ninth
2. Grade Tenth
3. Grade Eleventh
4. Grade Twelfth
Field trip refers to the students who will attending the amusement park field trip.
No field trip refers to the students who will not be attending the amusement park field trip.
We want to find out the probability that the selected student is an eleventh grader given that the student is going on a field trip.
Where P(eleventh and FT) is the probability of students who are in eleventh grade and will be going to field trip
Where P(FT) is the probability of students who will be going to field trip
So the required probability is