Answer: Irrational number
If the decimal digits repeat forever, then the repeating decimal is considered rational.
For instance, 2/99 = 0.020202020202... where the "02" repeats forever
If we don't have such a pattern, then we cannot write the decimal as a fraction of two integers and the number is not rational. So it is irrational.
Answer:
24/30
48/60
96/120
Step-by-step explanation:
For this case we must find the product of the following expression:
![\sqrt [3] {5} * \sqrt {2}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B5%7D%20%2A%20%5Csqrt%20%7B2%7D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We rewrite the expression using the lowest common index of 6, then:

We rewrite the terms in an equivalent way:

We rewrite the expression using the property mentioned:
![\sqrt [6] {5 ^ 2} * \sqrt [6] {2 ^ 3} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%7D%20%2A%20%5Csqrt%20%5B6%5D%20%7B2%20%5E%203%7D%20%3D)
We combine using the product rule for radicals:
![\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%7D%20%2A%20%5Csqrt%20%5Bn%5D%20%7Bb%7D%20%3D%20%5Csqrt%20%5Bn%5D%20%7Bab%7D)
So:
![\sqrt [6] {5 ^ 2 * 2 ^ 3} =\\\sqrt [6] {25 * 8} =\\\sqrt[6]{200}](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%20%2A%202%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B6%5D%20%7B25%20%2A%208%7D%20%3D%5C%5C%5Csqrt%5B6%5D%7B200%7D)
ANswer:
Option b
Answer:
60%
Step-by-step explanation:
16 loaves of white bread and 24 loaves of wheat bread. = 40 loaves of bread
P( wheat) = number of wheat/ total
= 24/40
=.6
=60%
Considering they are congruent
if 7x-19=2x+11
how much is 6x-8
7x-19=2x+11
7x=2x+30
7x-2x=30
5x=30
X=6
6x-8=
(6*X)-8=
(6*6)-8=
36-8=
28
therefore
BC= 28
2x+11
(2*6)+11
12+11
23
23+28+24=75
therefore the perimeter is 75
hope you found this helpful, brainliest if possible please