Answer:
I think its C if I'm wrong, sorrryyy
Answer: I think b but don’t take my word
Step-by-step explanation:
4x² + 2x - 30 = 0
<span>
factor out the GCF:
</span>2(2x² + x - 15) = 0
<span>
factor the trinomial completely:
2x</span>² + x - 15 = 0
2x² + 6x - 5x - 15 = 0
2x(x + 3) - 5(x + 3) = 0
(2x - 5)(x + 3) = 0
<span>use the zero product property and set each factor equal to zero and solve:
2x - 5 = 0 or x + 3 = 0
2x = 5 x = -3
x = 2.5
</span><span>The roots of the function are x=-3, x=2.5</span>
Answer:
a) -7/9
b) 16 / (n² + 15n + 56)
c) 1
Step-by-step explanation:
When n = 1, there is only one term in the series, so a₁ = s₁.
a₁ = (1 − 8) / (1 + 8)
a₁ = -7/9
The sum of the first n terms is equal to the sum of the first n−1 terms plus the nth term.
sₙ = sₙ₋₁ + aₙ
(n − 8) / (n + 8) = (n − 1 − 8) / (n − 1 + 8) + aₙ
(n − 8) / (n + 8) = (n − 9) / (n + 7) + aₙ
aₙ = (n − 8) / (n + 8) − (n − 9) / (n + 7)
If you wish, you can simplify by finding the common denominator.
aₙ = [(n − 8) (n + 7) − (n − 9) (n + 8)] / [(n + 8) (n + 7)]
aₙ = [n² − n − 56 − (n² − n − 72)] / (n² + 15n + 56)
aₙ = 16 / (n² + 15n + 56)
The infinite sum is:
∑₁°° aₙ = lim(n→∞) sₙ
∑₁°° aₙ = lim(n→∞) (n − 8) / (n + 8)
∑₁°° aₙ = 1
Step-by-step explanation:





If you graph the new identity, and the og identiy, they will be conciding graphs, so they are the same identity.