If the arc measures 250 degrees then the range of the central angle lies from π to 1.39π.
Given that the arc of a circle measures 250 degrees.
We are required to find the range of the central angle.
Range of a variable exhibits the lower value and highest value in which the value of particular variable exists. It can be find of a function.
We have 250 degrees which belongs to the third quadrant.
If 2π=360
x=250
x=250*2π/360
=1.39 π radians
Then the radian measure of the central angle is 1.39π radians.
Hence if the arc measures 250 degrees then the range of the central angle lies from π to 1.39π.
Learn more about range at brainly.com/question/26098895
#SPJ1
Answer:
99 24/25
Step-by-step explanation:
8.33*√144=
8.33*12=99 24/25 or 100 with 8.33 bar
F(y) = y + y^2 - 3
f(-2) = -2 + (-2^2) - 3
f(-2) = -2 + 4 - 3
f(-2) = -1
f(-4) = -4 + (-4^2) - 3
f(-4) = -4 + 16 - 3
f(-4) = 9
f(0) = 0 + 0^2 - 3
f(0) = -3
f(2) = 2 + 2^2 - 3
f(2) = 2 + 4 - 3
f(2) = 3
f(4) = 4 + 4^2 - 3
f(4) = 4 + 16 - 3
f(4) = 17