Answer:
The correct answer is option a.
Explanation:
Yes, the light reactions also depend upon the Calvin cycle. Calvin cycle refers to a phenomenon that is used by the plants and algae to convert carbon dioxide from the atmosphere into sugar, the food needed by the autotrophs in order to grow. The plants rely upon the Calvin cycle for food and energy.
In the given case, the rate of oxygen production would get diminish as the rate of ATP and NADP+ generated by the Calvin cycle diminishes. Of all the outcomes of the Calvin cycle, ADP and NADP+ are the only ones that get utilized by light reactions.
The ADP and NADP+ are used up by the light reactions to fuel their reactions. This illustrates that if the rate of ADP and NADP+ generated by the Calvin cycle diminishes the production of oxygen by the light reactions also diminishes.
Answer:
- GLYCOLYSIS :- Glycolysis is the metabolic pathway that converts glucose C₆H₁₂O₆, into pyruvic acid, CH₃COCOOH. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate and reduced nicotinamide adenine dinucleotide
- PRODUCTS :- Glycolysis produces 2 ATP, 2 NADH, and 2 pyruvate molecules: Glycolysis, or the aerobic catabolic breakdown of glucose, produces energy in the form of ATP, NADH, and pyruvate, which itself enters the citric acid cycle to produce more energy.
- INPUT:- Glycolysis is the first step in cellular respiration, occurring in all living cells. Overall, the input for glycolysis is one glucose, two ATP and two NAD+ molecules giving rise to two pyruvate molecules, four ATP and two NADH.
- BREAKDOWN:- During glycolysis, glucose ultimately breaks down into pyruvate and energy; a total of 2 ATP is derived in the process (Glucose + 2 NAD+ + 2 ADP + 2 Pi --> 2 Pyruvate + 2 NADH + 2 H+ + 2 ATP + 2 H2O). The hydroxyl groups allow for phosphorylation. The specific form of glucose used in glycolysis is glucose 6-phosphate
- STAGES:-
- Reaction 1: glucose phosphorylation to glucose 6-phosphate.
- Reaction 2: isomerization of glucose 6-phosphate to fructose 6-phosphate
- Reaction 3: phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate
- Reaction 4: cleavage of fructose 1,6-bisphosphate into two three-carbon fragments.
Explanation:
<h2>HOPE IT HELPS YOU ITZ ADMIRER </h2>
Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in living organisms.[1][2][3]
The discoverer of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance), and within the context of a population. Genetics has given rise to a number of subfields, including epigenetics and population genetics. Organisms studied within the broad field span the domains of life (archaea, bacteria, and eukarya).
Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intracellular or extracellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate due to lack of water and nutrients in its environment.
Y chromosome found in males which influence the degree of maleness