Answer:


Step-by-step explanation:
a.
![[\because \int \dfrac{dx}{x}=\log |x|+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cint%20%5Cdfrac%7Bdx%7D%7Bx%7D%3D%5Clog%20%7Cx%7C%2BC%5D)
b.
![[\because \int x^n dx=\dfrac{x^{n+1}}{n+1}+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cint%20x%5En%20dx%3D%5Cdfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%2BC%5D)
c.
![[\because \dfrac{adx}{x\sqrt{x^2-a^2}}=\csc^{-1}(\dfrac{x}{a})+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cdfrac%7Badx%7D%7Bx%5Csqrt%7Bx%5E2-a%5E2%7D%7D%3D%5Ccsc%5E%7B-1%7D%28%5Cdfrac%7Bx%7D%7Ba%7D%29%2BC%5D)
-3^2= -(3)^2
The exponent of 2 only applies to the number 3. -(3)^2 should equal -9. This is true because according to the order of operations, exponents should be evaluated before multiplication. The negative sign here represents -1* 3^2.
If you want to find -3 to the power of 2 it must be written (-3)^2.
Answer:
1
Step-by-step explanation:
1-0=1 totally trust me
Answer:
35% off
Step-by-step explanation: