Given:
Perimeter of a parallelogram = 64 cm
Length = 3 times larger than the width
To find:
The length of the parallelogram.
Solution:
We know that, the perimeter of the parallelogram is:

Where, l is length and w is width of the parallelogram.
We have, l = 3w and P=64.
So,



Divide both sides by 8.

Now,



Therefore, the length of the parallelogram is 24 cm.
Answer:
406452
Step-by-step explanation:
Set up a proportion
9.3/37800=100/x
Answer:
The correct answer is D. Trisecting any angle
since T is the midpoint of SU, then ST = TU.
![\bf \stackrel{10x-14}{\boxed{S}\rule[0.35em]{10em}{0.25pt}} T\stackrel{5x+16}{\rule[0.35em]{10em}{0.25pt}\boxed{U}} \\\\\\ \stackrel{ST}{10x-14}=\stackrel{TU}{5x+16}\implies 5x-14=16\implies 5x=30\implies x=\cfrac{30}{5}\implies x=6 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{ST}{10(6)-14\implies 46}~\hfill \stackrel{TU}{TU=ST=46}~\hfill \stackrel{SU}{ST+TU=92}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B10x-14%7D%7B%5Cboxed%7BS%7D%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%20T%5Cstackrel%7B5x%2B16%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%5Cboxed%7BU%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BST%7D%7B10x-14%7D%3D%5Cstackrel%7BTU%7D%7B5x%2B16%7D%5Cimplies%205x-14%3D16%5Cimplies%205x%3D30%5Cimplies%20x%3D%5Ccfrac%7B30%7D%7B5%7D%5Cimplies%20x%3D6%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BST%7D%7B10%286%29-14%5Cimplies%2046%7D~%5Chfill%20%5Cstackrel%7BTU%7D%7BTU%3DST%3D46%7D~%5Chfill%20%5Cstackrel%7BSU%7D%7BST%2BTU%3D92%7D)