1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
3 years ago
6

T is the midpoint of SU. Find ST, TU and SU. 10x-14 5x+16S———T———U

Mathematics
1 answer:
jeka943 years ago
6 0

since T is the midpoint of SU, then ST = TU.

\bf \stackrel{10x-14}{\boxed{S}\rule[0.35em]{10em}{0.25pt}} T\stackrel{5x+16}{\rule[0.35em]{10em}{0.25pt}\boxed{U}} \\\\\\ \stackrel{ST}{10x-14}=\stackrel{TU}{5x+16}\implies 5x-14=16\implies 5x=30\implies x=\cfrac{30}{5}\implies x=6 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{ST}{10(6)-14\implies 46}~\hfill \stackrel{TU}{TU=ST=46}~\hfill \stackrel{SU}{ST+TU=92}

You might be interested in
Carlton is using the following data samples to make a claim about the house values in his neighborhood:
olga2289 [7]
The answer is A because there is a outlier which is $100,000
8 0
3 years ago
Read 2 more answers
How many times does 8 go into 8
Hunter-Best [27]
Only 1 time because your talking about division so u have to divide 8 into 8 which it only goes in 1 time:)
7 0
3 years ago
Read 2 more answers
Suppose there are 4 defective batteries in a drawer with 10 batteries in it. A sample of 3 is taken at random without replacemen
SSSSS [86.1K]

Answer:

a.) 0.5

b.) 0.66

c.) 0.83

Step-by-step explanation:

As given,

Total Number of Batteries in the drawer = 10

Total Number of defective Batteries in the drawer = 4

⇒Total Number of non - defective Batteries in the drawer = 10 - 4 = 6

Now,

As, a sample of 3 is taken at random without replacement.

a.)

Getting exactly one defective battery means -

1 - from defective battery

2 - from non-defective battery

So,

Getting exactly 1 defective battery = ⁴C₁ × ⁶C₂ =  \frac{4!}{1! (4 - 1 )!} × \frac{6!}{2! (6 - 2 )!}

                                                                            = \frac{4!}{(3)!} × \frac{6!}{2! (4)!}

                                                                            = \frac{4.3!}{(3)!} × \frac{6.5.4!}{2! (4)!}

                                                                            = 4 × \frac{6.5}{2.1! }

                                                                            = 4 × 15 = 60

Total Number of possibility = ¹⁰C₃ = \frac{10!}{3! (10-3)!}

                                                        = \frac{10!}{3! (7)!}

                                                        = \frac{10.9.8.7!}{3! (7)!}

                                                        = \frac{10.9.8}{3.2.1!}

                                                        = 120

So, probability = \frac{60}{120} = \frac{1}{2} = 0.5

b.)

at most one defective battery :

⇒either the defective battery is 1 or 0

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 0 , then 3 non defective

Possibility   = ⁴C₀ × ⁶C₃

                   =  \frac{4!}{0! (4 - 0)!} × \frac{6!}{3! (6 - 3)!}

                   = \frac{4!}{(4)!} × \frac{6!}{3! (3)!}

                   = 1 × \frac{6.5.4.3!}{3.2.1! (3)!}

                   = 1× \frac{6.5.4}{3.2.1! }

                   = 1 × 20 = 20

getting at most 1 defective battery = 60 + 20 = 80

Probability = \frac{80}{120} = \frac{8}{12} = 0.66

c.)

at least one defective battery :

⇒either the defective battery is 1 or 2 or 3

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 2 , then 1 non defective

Possibility   = ⁴C₂ × ⁶C₁

                   =  \frac{4!}{2! (4 - 2)!} × \frac{6!}{1! (6 - 1)!}

                   = \frac{4!}{2! (2)!} × \frac{6!}{1! (5)!}

                   = \frac{4.3.2!}{2! (2)!} × \frac{6.5!}{1! (5)!}

                   = \frac{4.3}{2.1!} × \frac{6}{1}

                   = 6 × 6 = 36

If the defective battery is 3 , then 0 non defective

Possibility   = ⁴C₃ × ⁶C₀

                   =  \frac{4!}{3! (4 - 3)!} × \frac{6!}{0! (6 - 0)!}

                   = \frac{4!}{3! (1)!} × \frac{6!}{(6)!}

                   = \frac{4.3!}{3!} × 1

                   = 4×1 = 4

getting at most 1 defective battery = 60 + 36 + 4 = 100

Probability = \frac{100}{120} = \frac{10}{12} = 0.83

3 0
2 years ago
Plot the following points on a xy-plane.<br> (5,2) , (-2, 1) , (-1,-3)
aliya0001 [1]

Answer: See below

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Select True or False for each equation
7nadin3 [17]
True, false, false, true
7 0
3 years ago
Read 2 more answers
Other questions:
  • Ve.
    7·1 answer
  • When did the U.S dollar become part of a total fiat system
    12·2 answers
  • If cot theta = 2/3, what is the value of csc theta?
    14·2 answers
  • List the sides of each triangle in order from shortest to longest
    14·2 answers
  • If Arianna turns the stove dial 135 to the right what setting will the dial be on​
    10·1 answer
  • (MATH) (6) ((PHOTO)) W-1<br>​
    11·1 answer
  • Slope = -2 passes through (-3,5)
    13·2 answers
  • Philip made a total of 9 bracelets and necklaces from 120 inches of cord. He used 8 inches of cord for each bracelet and 20 inch
    5·1 answer
  • If i have 37 test left and do 6 a day how many weeks will that take me to be done
    5·1 answer
  • Point A is at (5, 6) on the coordinate plane. It is reflected over the y-axis to create point B. Point A is then reflected over
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!