Rewrite the given equation in slope intercept form:
5 y = 10 – 2 x
y = - 0.4 x + 2
Since the two lines are parallel, therefore they have
similar slope which is – 0.4, so the equation is:
y = - 0.4 x + b
Given that x = 5, y = -4, find for b:
-4 = - 0.4 (5) + b
b = -2
So the answer is:
y = - 0.4 x – 2
or
<span>2 x + 5 y = - 10</span>
Answer:y=
Acosx+Bsinx +cosx ln(cosx)+x sinx
Step-by-step explanation:
given equation y''+y=secx
auxiliary equation
![p^2+1=0\\p=\pm i](https://tex.z-dn.net/?f=p%5E2%2B1%3D0%5C%5Cp%3D%5Cpm%20i)
so CF is y=Acosx+Bsinx
now
![y_1(x)=cosx \ \ \ \ y_2(x)=sinx\\{y_1}'(x)=-sinx \ \ \ \ {y_2}'(x)=cosx](https://tex.z-dn.net/?f=y_1%28x%29%3Dcosx%20%5C%20%5C%20%5C%20%5C%20y_2%28x%29%3Dsinx%5C%5C%7By_1%7D%27%28x%29%3D-sinx%20%5C%20%5C%20%5C%20%5C%20%7By_2%7D%27%28x%29%3Dcosx)
using wronskian formula
![W=\begin{vmatrix}cosx &sinx \\ -sinx & cosx\end{vmatrix}](https://tex.z-dn.net/?f=W%3D%5Cbegin%7Bvmatrix%7Dcosx%20%26sinx%20%5C%5C%20-sinx%20%26%20cosx%5Cend%7Bvmatrix%7D)
=![cos^2x+sin^2x=1](https://tex.z-dn.net/?f=cos%5E2x%2Bsin%5E2x%3D1)
now f(x)=secx
![u=-\int \frac{f(x)y_2(x)}{W(x)}dx \ and \ v=\int \frac{f(x)y_1(x)}{W(x)}dx](https://tex.z-dn.net/?f=u%3D-%5Cint%20%5Cfrac%7Bf%28x%29y_2%28x%29%7D%7BW%28x%29%7Ddx%20%5C%20and%20%5C%20v%3D%5Cint%20%5Cfrac%7Bf%28x%29y_1%28x%29%7D%7BW%28x%29%7Ddx)
![u=-\int \frac{secx\times sinx}{1}dx \ and \ v=\int \frac{secx\times cosx}{1}dx](https://tex.z-dn.net/?f=u%3D-%5Cint%20%5Cfrac%7Bsecx%5Ctimes%20sinx%7D%7B1%7Ddx%20%5C%20and%20%5C%20v%3D%5Cint%20%5Cfrac%7Bsecx%5Ctimes%20cosx%7D%7B1%7Ddx)
![u=-\int tanx dx \ and \ v=\int {1}dx](https://tex.z-dn.net/?f=u%3D-%5Cint%20tanx%20dx%20%5C%20and%20%5C%20v%3D%5Cint%20%7B1%7Ddx)
![u=ln(cosx) \ \ \ and \ \ v=x](https://tex.z-dn.net/?f=u%3Dln%28cosx%29%20%5C%20%5C%20%5C%20and%20%5C%20%5C%20v%3Dx)
now particular integrals are
PI=cosx ln(cosx)+x sinx
total solution
y= C.F+P.I
y=Acosx+Bsinx +cosx ln(cosx)+x sinx
Consider the length of diagonal is 8.5 cm instead of 8.5 m because length of perpendiculars are in cm.
Given:
Length of the diagonal of a quadrilateral = 8.5 cm
Lengths of the perpendiculars dropped on it from the remaining opposite vertices are 3.5 cm and 4.5 cm.
To find:
The area of the quadrilateral.
Solution:
Diagonal divides the quadrilateral in 2 triangles. If diagonal is the base of both triangles then the lengths of the perpendiculars dropped on it from the remaining opposite vertices are heights of those triangles.
According to the question,
Triangle 1 : Base = 8.5 cm and Height = 3.5 cm
Triangle 2 : Base = 8.5 cm and Height = 4.5 cm
Area of a triangle is
![Area=\dfrac{1}{2}\times base \times height](https://tex.z-dn.net/?f=Area%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20base%20%5Ctimes%20height)
Using this formula, we get
![Area(\Delta 1)=\dfrac{1}{2}\times 8.5\times 3.5](https://tex.z-dn.net/?f=Area%28%5CDelta%201%29%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%208.5%5Ctimes%203.5)
![Area(\Delta 1)=14.875](https://tex.z-dn.net/?f=Area%28%5CDelta%201%29%3D14.875)
and
![Area(\Delta 2)=\dfrac{1}{2}\times 8.5\times 4.5](https://tex.z-dn.net/?f=Area%28%5CDelta%202%29%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%208.5%5Ctimes%204.5)
![Area(\Delta 2)=19.125](https://tex.z-dn.net/?f=Area%28%5CDelta%202%29%3D19.125)
Now, area of the quadrilateral is
![Area=Area(\Delta 1)+Area(\Delta 2)](https://tex.z-dn.net/?f=Area%3DArea%28%5CDelta%201%29%2BArea%28%5CDelta%202%29)
![Area=14.875+19.125](https://tex.z-dn.net/?f=Area%3D14.875%2B19.125)
![Area=34](https://tex.z-dn.net/?f=Area%3D34)
Therefore, the area of the quadrilateral is 34 cm².
|sin(x)−sin(y)|=|2sin(x−y2)cos(x+y2)|≤|2sin(x−y2)|
Answer:
I can't see the numbers well, but the graph is decreasing from (-inf, minimum) and increasing from (minimum, inf). The minimum is the vertex. Hope this helps!
Step-by-step explanation: