The equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x
<h3>How to evaluate the expression?</h3>
The expression is given as:
(8x)^-2/3 * (27x)^-1/3
Evaluate the exponent 8^-2/3
(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * (27x)^-1/3
Evaluate the exponent (27x)^-1/3
(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * 1/3(x)^-1/3
Multiply 1/4 and 1/3
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^-2/3 * (x)^-1/3
Evaluate the exponent
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-2/3 -1/3)
This gives
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-1)
So, we have
(8x)^-2/3 * (27x)^-1/3 = 1/12x
Hence, the equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x
Read more about equivalent expression at
brainly.com/question/2972832
#SPJ1
Answer:
y=3/4x+5
Step-by-step explanation:
m=(y2-y1)/(x2-x1)
m=(8-5)/(4-0)
m=3/4
y-y1=m(x-x1)
y-5=3/4(x-0)
y-5=3/4(x)
y-5=3/4x
y=3/4x+5
Answer:0.12
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
The slope is given by
m = (y2-y1)/(x2-x1)
-3/10 = (-5--8)/(-5-x)
-3/10 = (-5+8)/(-5-x)
Using cross multiplication
-3 (-5-x) = 10*(-5+8)
Simplify
-3(-5-x) =10(3)
Divide by -3
-3/-3(-5-x) =10(3)/-3
-5-x = -10
Add 5 to each side
-5-x+5 = -10+5
-x=-5
Divide by -1
x=5