Answer:
19 x 3 = 57
19 plus 19 plus 19 = 57
19 to the power of 3 squared = 6859
Step-by-step explanation:
Measure of Hypotaneous = 5√5
And it's already given that b = 2a
By using pythagoras theorem:
a²+ b² = (5√5)²
Let's substitute for b as 2a in above equation we'll get:
a² + (2a)² = (5√5)²
a² + 4a² = 125
5a² = 125
a² = 25
a = √25 = 5
Therefore,
a= 5
and
b = 2a = 2(5) = 10.
Answer:
The answer is y = -1/3x + 5 !
Step-by-step explanation:
If you observe the line, the y-intercept is 5, from the point in the graph (0,5). From that point, we can see that the rise over run is -1/3. Thus, y = -1/3x + 5.
well, this is just a matter of simple unit conversion, so let's recall that one revolution on a circle is just one-go-around, radians wise that'll be 2π, and we also know that 1 minute has 60 seconds, let's use those values for our product.
![\cfrac{300~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{2\pi ~rad}{~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{60secs}\implies \cfrac{(300)(2\pi )rad}{60secs}\implies 10\pi ~\frac{rad}{secs}\approx 31.42~\frac{rad}{secs}](https://tex.z-dn.net/?f=%5Ccfrac%7B300~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B2%5Cpi%20~rad%7D%7B~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B60secs%7D%5Cimplies%20%5Ccfrac%7B%28300%29%282%5Cpi%20%29rad%7D%7B60secs%7D%5Cimplies%2010%5Cpi%20~%5Cfrac%7Brad%7D%7Bsecs%7D%5Capprox%2031.42~%5Cfrac%7Brad%7D%7Bsecs%7D)
Answer:
I’m guessing the double points is a typo.
Slope: -5/6
Step-by-step explanation:
Hope this helps <3
Btw love your username <333