Answer:
Subtract One-half from both sides of the equation.
Divide both sides by 6/7
Multiply both sides by 7/6
Step-by-step explanation:
just took the question on ed
Answer:
90 around the origin
Step-by-step explanation:
Here is the answer
Let
x-----------> <span>the side length of a pyramid square base
h-----------> t</span>he height of the sculpture <span>in the shape of a pyramid
we know that
h=(x-3)
Volume=162 cm</span>³
Volume=x² *(x-3)/3
then
x² *(x-3)/3=162----------> x³-3x²=486----------> x³-3x²-486=0
x³-3x²-486=0-------- <span>this equation can be used to find the length of the sculpture’s base
using a graph tool-----------> </span>to find the solution
x=9 cm -------------> see the attached figure
h=(x-3)-----> h=9-3--------> h=6 cm
the answer is
<span>
the length of the sculpture’s base is 9 cm</span>
the height of the sculpture is 6 cm
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.