If this is a question about who is correct Clair is correct
Let X be the number of burglaries in a week. X follows Poisson distribution with mean of 1.9
We have to find the probability that in a randomly selected week the number of burglaries is at least three.
P(X ≥ 3 ) = P(X =3) + P(X=4) + P(X=5) + ........
= 1 - P(X < 3)
= 1 - [ P(X=2) + P(X=1) + P(X=0)]
The Poisson probability at X=k is given by
P(X=k) = 
Using this formula probability of X=2,1,0 with mean = 1.9 is
P(X=2) = 
P(X=2) = 
P(X=2) = 0.2698
P(X=1) = 
P(X=1) = 
P(X=1) = 0.2841
P(X=0) = 
P(X=0) = 
P(X=0) = 0.1495
The probability that at least three will become
P(X ≥ 3 ) = 1 - [ P(X=2) + P(X=1) + P(X=0)]
= 1 - [0.2698 + 0.2841 + 0.1495]
= 1 - 0.7034
P(X ≥ 3 ) = 0.2966
The probability that in a randomly selected week the number of burglaries is at least three is 0.2966
Answer:
30,000 thousands make 30 million
Step-by-step explanation:
Solve by dividing 30 million by 1,000
Answer:
i think it's letter c. f (n) = 4n-1
Step-by-step explanation:
1x4= 4, 2x4= 8, 3x4= 16, and so on
hope this helps!! :))
Answer:
Mean= 118.2
Median= 22
Step-by-step explanation:
41+20+22+26+46 divided by 5= 118.2
Median= number in the middle