Answer: The correct option is (B) (2, -1).
Step-by-step explanation: Given that LMNO is a parallelogram where the co-ordinates of the vertices L,M and N are
L(-1,-1) , M(0,0) and N(3,0).
We are to find the co-ordinates of the vertex O.
Let, (a, b) be the co-ordinates of the vertex O.
Since LMNO is parallelogram, so the opposite sides will be parallel.
That is, LM is parallel to NO. So, we have
![\textup{slope of LM}=\textup{slope of NO}\\\\\Rightarrow \dfrac{0-(-1)}{0-(-1)}=\dfrac{b-0}{a-3}\\\\\\\Rightarrow \dfrac{1}{1}=\dfrac{b}{a-3}\\\\\Rightarrow b=a-3\\\\\Rightarrow a=b+3~~~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://tex.z-dn.net/?f=%5Ctextup%7Bslope%20of%20LM%7D%3D%5Ctextup%7Bslope%20of%20NO%7D%5C%5C%5C%5C%5CRightarrow%20%5Cdfrac%7B0-%28-1%29%7D%7B0-%28-1%29%7D%3D%5Cdfrac%7Bb-0%7D%7Ba-3%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cdfrac%7B1%7D%7B1%7D%3D%5Cdfrac%7Bb%7D%7Ba-3%7D%5C%5C%5C%5C%5CRightarrow%20b%3Da-3%5C%5C%5C%5C%5CRightarrow%20a%3Db%2B3~~~~~~~~~~~~~~~~~~~~~~~~~~%28i%29)
and MN is parallel to OL. So,
![\textup{slope of MN}=\textup{slope of OL}\\\\\\\Rightarrow \dfrac{0-0}{3-0}=\dfrac{-1-b}{-1-a}\\\\\\\Rightarrow 0=\dfrac{b+1}{a+1}\\\\\\\Rightarrow b+1=0\\\\\Rightarrow b=-1.](https://tex.z-dn.net/?f=%5Ctextup%7Bslope%20of%20MN%7D%3D%5Ctextup%7Bslope%20of%20OL%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cdfrac%7B0-0%7D%7B3-0%7D%3D%5Cdfrac%7B-1-b%7D%7B-1-a%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%200%3D%5Cdfrac%7Bb%2B1%7D%7Ba%2B1%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20b%2B1%3D0%5C%5C%5C%5C%5CRightarrow%20b%3D-1.)
Therefore, from equation (i), we get
![a=-1+3=2.](https://tex.z-dn.net/?f=a%3D-1%2B3%3D2.)
Thus, the co-ordinates of vertex O are (2, -1).
Option (B) is correct.