Answer:
4). The Washington Monument is 169.2-m tall.
Step-by-step explanation:
4). We know this because...
person 1.8 0.7
---------- = ----- = -------
Wash. x 65.8
We then know to cross-multiply to get:
1.8(65.8) = 0.7x
Which simplifies down to:
118.44 = 0.7x
x = 169.2
Answer:
5). The pond is 180ft wide.
Step-by-step explanation:
5). We know this because...
90 120
----- = -------
135 x
We then know to cross-multiply to get:
90x = 120(135)
Which simplifies down to:
90x = 16200
x = 180
Answer:
6). The height of the clock tower is 13ft 9in.
Step-by-step explanation:
6). We know this because...
person 5.5 4
---------- = -------- = -----
clock x 10
We then know to cross-multiply to get:
5.5(10) = 4x
Which simplifies down to:
55 = 4x
x = 13.75 (13 ft 9 in)
Answer:
(3) 2(3x - 5)(3x + 5)
Step-by-step explanation:
![18 {x}^{2} - 50 \\ = 2(9 {x}^{2} - 25) \\ = 2(3x - 5)(3x + 5)](https://tex.z-dn.net/?f=18%20%7Bx%7D%5E%7B2%7D%20%20-%2050%20%5C%5C%20%20%3D%202%289%20%7Bx%7D%5E%7B2%7D%20%20-%2025%29%20%5C%5C%20%20%3D%202%283x%20-%205%29%283x%20%2B%205%29)
Answer:
![\frac{x^2}{25} +\frac{y^2}{16} =1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B25%7D%20%2B%5Cfrac%7By%5E2%7D%7B16%7D%20%3D1)
Step-by-step explanation:
For ellipses, the length of the major axis is represents as:
Major axis = ![2a](https://tex.z-dn.net/?f=2a)
where
is called the semi-major axis.
In this case since the major axis is equal to 10 units:
![10=2a](https://tex.z-dn.net/?f=10%3D2a)
solving for the semi-major axis
:
![a=10/2\\a=5](https://tex.z-dn.net/?f=a%3D10%2F2%5C%5Ca%3D5)
and also the minor axis of an ellipse is represented as:
Minor axis = ![2b](https://tex.z-dn.net/?f=2b)
where
is called the semi-minor axis.
Since the minor axis has a length of 8 units:
![8=2b](https://tex.z-dn.net/?f=8%3D2b)
solving for b:
![b=8/2\\b=4](https://tex.z-dn.net/?f=b%3D8%2F2%5C%5Cb%3D4)
Now we can use the equation for an ellipse centered at the origin (0,0):
![\frac{x^2}{a^2} +\frac{y^2}{b^2} =1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%20%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%20%3D1)
and substituting the values for
and
:
![\frac{x^2}{5^2} +\frac{y^2}{4^2} =1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B5%5E2%7D%20%2B%5Cfrac%7By%5E2%7D%7B4%5E2%7D%20%3D1)
and finall we simplify the expression to get the equation of the ellipse:
![\frac{x^2}{25} +\frac{y^2}{16} =1](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%7D%7B25%7D%20%2B%5Cfrac%7By%5E2%7D%7B16%7D%20%3D1)
Answer:
circle of diagram (89).&"71
Log w (x^2-6)^4
Using log a b = log a + log b, with a=w and b=(x^-6)^4:
log w (x^2-6)^4 = log w + log (x^2-6)^4
Using in the second term log a^b = b log a, with a=x^2-6 and b=4
log w (x^2-6)^4 = log w + log (x^2-6)^4 = log w + 4 log (x^2-6)
Then, the answer is:
log w (x^2-6)^4 = log w + 4 log (x^2-6)