Answer:
x = 0, 4/5
Step-by-step explanation:
The zero-product property states that if the product of a and b is zero, then either a = 0, b = 0, or both terms equal zero
- Here our a term is -x and our b term is (5x - 4)
- Setting each term equal to zero and solving for x we get
- -x = 0 → x = 0
- 5x - 4 = 0 → 5x = 4 → x = 4/5
Answer:
Step-by-step explanation:
Y=1/2y
Answer:
Just use long subtraction by expanding the decimal places of the whole number. This is done by adding a point, and enough zeros to it to match the number of decimal digits in the other number (digits after the decimal point).
12345678
i.e: 5 - 2.48374827, 2.48374827 has 8 decimal digits, so add 8 zeros after the point.
=
1 1 1 1 1 1 1
5.00000000
-
2.48374827
_______________
2.51625173
7 + 3 = <u>1</u>0, 7 + 2 + <u>1</u> = <u>1</u>0, 8 + 1 + <u>1</u>= <u>1</u>0, 5 + 4 + <u>1</u> = <u>1</u>0, 2 + 7 + <u>1</u> = <u>1</u>0, 3 + 6 + <u>1</u> = <u>1</u>0, 1 + 8 + <u>1</u> = <u>1</u>0, 5 + 4 + <u>1</u> = <u>1</u>0, 2 + 2 + <u>1</u> = <u>5</u><u> </u><u>:</u><u> </u>5.00000000
This is basically borrowing a group of 10s which are the same as 1s in the next decimal place up.
For each digit except the first to the right, let 10 subtract that number from it and minus 1 since the 1 is carried over.
The speed of one car is 'S'. The speed of the other car is (S + 10).
In 5 hours, the first car travels (5S) miles, and the other car travels 5(S + 10) miles.
Since they're going in opposite directions, the distance between them at any time
is the sum of the distance that each one has traveled.
500 = (5S) + 5(S + 10)
500 = 5S + 5S + 50
500 = 10S + 50
Subtract 50 from each side:
450 = 10S
Divide each side by 10
S = <u>45</u>
S + 10 = <u>55</u>
Domain means the values of independent variable(input) which will give defined output to the function.
Given:
The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function
![h(t)=-16t^2 + 96t](https://tex.z-dn.net/?f=%20h%28t%29%3D-16t%5E2%20%2B%2096t%20)
Solution:
To get defined output, the height h(t) need to be greater than or equal to zero. We need to set up an inequality and solve it to find the domain values.
![To \; find \; domain:\\\\h(t) \geq0\\\\-16t^2+96t \geq 0\\Factoring \; -16t \; in \; the \; left \; side \; of \; the \; inequality\\\\-16t(t-6) \geq 0\\Step \; 1: Find \; Boundary \; Points \; by \; setting \; up \; above \; inequality \; to \; zero.\\\\t(t-6)=0\\Use \; zero \; factor \; property \; to \; solve\\\\t=0 \; (or) \; t = 6\\\\Step \; 2: \; List \; the \; possible \; solution \; interval \; using \; boundary \; points\\(- \infty,0], \; [0, 6], \& [6, \infty)](https://tex.z-dn.net/?f=%20To%20%5C%3B%20find%20%5C%3B%20domain%3A%5C%5C%5C%5Ch%28t%29%20%5Cgeq0%5C%5C%5C%5C-16t%5E2%2B96t%20%5Cgeq%20%200%5C%5CFactoring%20%5C%3B%20-16t%20%5C%3B%20in%20%5C%3B%20the%20%5C%3B%20left%20%5C%3B%20side%20%5C%3B%20of%20%5C%3B%20the%20%5C%3B%20inequality%5C%5C%5C%5C-16t%28t-6%29%20%5Cgeq%20%200%5C%5CStep%20%5C%3B%201%3A%20Find%20%5C%3B%20Boundary%20%5C%3B%20Points%20%5C%3B%20by%20%5C%3B%20setting%20%5C%3B%20up%20%5C%3B%20above%20%5C%3B%20inequality%20%5C%3B%20to%20%5C%3B%20zero.%5C%5C%5C%5Ct%28t-6%29%3D0%5C%5CUse%20%5C%3B%20zero%20%5C%3B%20factor%20%5C%3B%20property%20%5C%3B%20to%20%5C%3B%20solve%5C%5C%5C%5Ct%3D0%20%5C%3B%20%28or%29%20%5C%3B%20t%20%3D%206%5C%5C%5C%5CStep%20%5C%3B%202%3A%20%5C%3B%20List%20%5C%3B%20the%20%5C%3B%20possible%20%20%5C%3B%20solution%20%5C%3B%20interval%20%5C%3B%20using%20%5C%3B%20boundary%20%5C%3B%20points%5C%5C%28-%20%5Cinfty%2C0%5D%2C%20%5C%3B%20%5B0%2C%206%5D%2C%20%5C%26%20%5B6%2C%20%5Cinfty%29%20)
![Step \; 3:Pick \; test \; point \; from \; each \; interval \; to \; check \; whether \\\; makes \; the \; inequality \; TRUE \; or \; FALSE\\\\When \; t = -1\\-16(-1)(-1-6) \geq 0\\-112 \geq 0 \; FALSE\\(-\infty, 0] \; is \; not \; solution\\Also \; Logically \; time \; t \; cannot \; be \; negative\\\\When \; t = 1\\-16(1)(1-6) \geq 0\\80 \geq 0 \; TRUE\\ \; [0, 6] \; is \; a \; solution\\\\When \; t = 7\\-16(7)(7-6) \geq 0\\-112 \geq 0 \; FALSE\\ \; [6, -\infty) \; is \; not \; solution](https://tex.z-dn.net/?f=%20Step%20%5C%3B%203%3APick%20%5C%3B%20test%20%5C%3B%20point%20%5C%3B%20from%20%5C%3B%20each%20%5C%3B%20interval%20%5C%3B%20to%20%5C%3B%20check%20%5C%3B%20whether%20%5C%5C%5C%3B%20makes%20%5C%3B%20the%20%5C%3B%20inequality%20%5C%3B%20TRUE%20%5C%3B%20or%20%5C%3B%20FALSE%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%20-1%5C%5C-16%28-1%29%28-1-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%28-%5Cinfty%2C%200%5D%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%5C%5CAlso%20%5C%3B%20Logically%20%5C%3B%20time%20%5C%3B%20t%20%5C%3B%20cannot%20%5C%3B%20be%20%5C%3B%20negative%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%201%5C%5C-16%281%29%281-6%29%20%5Cgeq%20%200%5C%5C80%20%5Cgeq%20%200%20%5C%3B%20TRUE%5C%5C%20%5C%3B%20%5B0%2C%206%5D%20%5C%3B%20is%20%5C%3B%20a%20%5C%3B%20solution%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%207%5C%5C-16%287%29%287-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%20%5C%3B%20%5B6%2C%20-%5Cinfty%29%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%20)
Conclusion:
The domain of the function is the time in between 0 to 6 seconds
![0 \leq t \leq 6](https://tex.z-dn.net/?f=%200%20%5Cleq%20%20t%20%5Cleq%20%206%20)
The height will be positive in the above interval.