Answer:
Even if a person doesn't show symptoms, they can still have it.
Step-by-step explanation:
That's the problem.
Even if you think everyone isn't sick, they very well could be, and because there is no vaccine and it spreads so quickly, there's a chance that all the people in that group could get it.
Part (a)
There are 7 red out of 7+3 = 10 total
<h3>Answer: 7/10</h3>
==========================================================
Part (b)
We have 3 green out of 10 total
<h3>Answer: 3/10</h3>
==========================================================
Part (c)
3/10 is the probability of getting green on any selection. This is because we put the first selection back (or it is replaced with an identical copy)
So (3/10)*(3/10) = 9/100 is the probability of getting two green in a row.
<h3>Answer: 9/100</h3>
==========================================================
Part (d)
Similar to part (c) we have 7/10 as the probability of getting red on each independent selection.
(7/10)*(7/10) = 49/100
<h3>Answer: 49/100</h3>
==========================================================
Part (e)
7/10 is the probability of getting red and 3/10 is the probability of getting green. Each selection is independent of any others.
(7/10)*(3/10) = 21/100
<h3>Answer: 21/100</h3>
==========================================================
Part (f)
We have the exact same set up as part (e). Notice how (7/10)*(3/10) is the same as (3/10)*(7/10).
<h3>Answer: 21/100</h3>
Y=mx+b, the b is your y-intercept so just rearrange your equation
y=(3/7)x+(2/7)
your y-intercept would be b) (2/7)
Answer:
rational function is the correct answer