Answer: a) An = An-1 + An-2
b) 55ways
Step-by-step explanation:
a) a nickel is 5 cents and a dime is 10cent so a multiple of 5 cents is the possible way to pay the tolls in both choices.
Let An represents the number of possible ways the driver can pay a toll of 5n cents, so that
An = 5n cents
Case 1: Using a nickel for payment which is 5 cents, the number of ways given as;
An-1 = 5( n-1)
Case 2: using a dime which is two 5 cents, the number of ways is given as;
An-2 = 5(n-2)
Summing up the number of ways, we have
An = An-1 + An-2
From the relation,
If n= 0, Ao= 1
n =1, A1= 1
b) 45 cents paid in multiples of 5cents will give us 9 ways(A9)
From the relation, we have that
Ao = 1
A1 = 1
An =An-1 + An-2
Ao = 1
A1 = 1
A2 = A1+Ao = 1+1= 2
A3 = A2 + A1 = 3
A4 = A3+A2=5
A5=A4+A3=8
A6=A5+A4=13
A7 =A6+A5 = 21
A8= A7+A6= 34
A9= A8+A7= 55
So there are 55ways to pay 45cents.
I totally forgot that I am having meeting at my work place. All of sudden, I remembered that meeting through a hint given by my colleague while having discussion about our project work. I have to present a topic which I didn't prepare yet. Meeting is at 1.15pm. OMG! It's already 12.30 pm. Within few minutes I went to the meeting place with my topic. When I entered the meeting hall, the time was 12.53pm. I was happy to know that I arrived 22 minutes earlier.
Answer:
7.127
Step-by-step explanation:
Hope this helps!
We have the following information:
first urn: 6 green balls and 3 red ones
total: 6 + 3 = 9
second urn: 3 green, 3 white and 3 red
total: 3 + 3 + 3 = 9
third urn: 6 green, 1 white and 2 red
total: 6 + 1 + 2 = 9
a) A green ball is more likely to be obtained, since there are more green balls than red balls, which makes the probability higher.
b) probability of drawing a green, red and white ball.
first urn:
green = 6/9 = 66.66%
red = 3/9 = 33.33%
white = 0/9 = 0%
second urn:
green = 3/9 = 33.33%
red = 3/9 = 33.33%
white = 3/9 = 33.33%
third urn:
green = 6/9 = 66.66%
red = 2/9 = 22.22%
white = 1/9 = 11.11%
c) it would be chosen where the probability of drawing green would be the highest, which means that it would be possible both in the first and in the third ballot box, the probability is equal 66.66%
d) without a green ball, the third ballot box would look like this:
5 green balls, 2 red balls and 1 white ball, with a total of 8.
The probability of drawing would be:
green = 5/8 = 62.5%
red = 2/8 = 25%
white = 1/8 = 12.5%