I believe the answer is B.
Hope this helps <3
Divide I from both sides then subtract r from both sides, too so in the end:
R= (E-r)/I
yes you are correct are you good at counterexample
Answer:
The fourth pair of statement is true.
9∈A, and 9∈B.
Step-by-step explanation:
Given that,
U={x| x is real number}
A={x| x∈ U and x+2>10}
B={x| x∈ U and 2x>10}
If 5∈ A, Then it will be satisfies x+2>10 , but 5+2<10.
Similarly, If 5∈ B, Then it will be satisfies 2x>10 , but 2.5=10.
So, 5∉A, and 5∉B.
If 6∈ A, Then it will be satisfies x+2>10 , but 6+2<10.
Similarly, If 6∈ B, Then it will be satisfies 2x>10 , and 2.6=12>10.
So, 6∉A, and 6∈B.
If 8∈ A, Then it will be satisfies x+2>10 , but 8+2=10.
Similarly, If 8∈ B, Then it will be satisfies 2x>10. 2.8=16>10.
So, 8∉A, and 8∈B.
If 9∈ A, Then it will be satisfies x+2>10 , but 9+2=11>10.
Similarly, If 9∈ B, Then it will be satisfies 2x>10. 2.9=18>10.
So, 9∈A, and 9∈B.
1. 13*13*13 =2197
2. 2/5*2/5 = 4/25
3. 0.9*0.9 = 0.81