Answer:
a) Perimeter 
b)Area 
Step-by-step explanation:
Given ABC is a triangle with vertices at A(-2,-3), B(6,-3) and C(-1,5)
The vertices A(-2,-3), B(6,-3) and C(-1,5) are represented by
respectively
Now find the perimeter of the triangle ABC
The perimeter is found by first finding the three distances between the three vertices
given by



The perimeter is given by
Perimeter 
now find 





Similarly we find 




find 




Now adding the distances we get
Perimeter 
Perimeter 
b) Area of the given triangle ABC
The formula for the area of the triangle defined by the three vertices A, B and C is given by:
![Area= \frac{1}{2} {\det {\left[\begin{array}{ccc}x_A&x_B&x_C\\y_A&y_B&y_C\\1&1&1\end{array}\right]}}](https://tex.z-dn.net/?f=Area%3D%20%5Cfrac%7B1%7D%7B2%7D%20%7B%5Cdet%20%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_A%26x_B%26x_C%5C%5Cy_A%26y_B%26y_C%5C%5C1%261%261%5Cend%7Barray%7D%5Cright%5D%7D%7D)
where det is the determinant of the three by three matrix.
![Area=\frac{1}{2}{{\det \left[\begin{array}{ccc}-2&6&-1\\ -3& -3&5\\ 1 & 1 & 1\end{array}\right]}}](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7D%7B%7B%5Cdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%266%26-1%5C%5C%20-3%26%20-3%265%5C%5C%201%20%26%201%20%26%201%5Cend%7Barray%7D%5Cright%5D%7D%7D)
![Area=\frac{1}{2}[-2(-3-5)-6(-3-5)-1(-3+3)+3(6+1)-3(-2+1)-5(-2-6)+1(30-3)-1(-10-3)+1(6+18)]](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7D%5B-2%28-3-5%29-6%28-3-5%29-1%28-3%2B3%29%2B3%286%2B1%29-3%28-2%2B1%29-5%28-2-6%29%2B1%2830-3%29-1%28-10-3%29%2B1%286%2B18%29%5D%20)
![Area=\frac{1}{2}[-2(-8)-6(-8)-1(0)+3(7)-3(-1)-5(-8)+1(27)-1(-13)+1(24)]](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7D%5B-2%28-8%29-6%28-8%29-1%280%29%2B3%287%29-3%28-1%29-5%28-8%29%2B1%2827%29-1%28-13%29%2B1%2824%29%5D%20)
![Area=\frac{1}{2}[16+48+0+21+3+40+27+13+24]](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7D%5B16%2B48%2B0%2B21%2B3%2B40%2B27%2B13%2B24%5D)

